• Title/Summary/Keyword: Wrinkled structure

Search Result 28, Processing Time 0.019 seconds

Highly Sensitive Stretchable Electronic Skin with Isotropic Wrinkled Conductive Network

  • Seung Hwan Jeon;Hyeongho Min;Jihun Son;Tae Kon Ahn;Changhyun Pang
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.7-11
    • /
    • 2024
  • Soft-pressure sensors have numerous applications in soft robotics, biomedical devices, and wearable smart devices. Herein, we present a highly sensitive electronic skin device with an isotropic wrinkled pressure sensor. A conductive ink for soft pressure sensors is produced by a solution process using polydimethylsiloxane (PDMS), poly 3-hexylthiophene (P3HT), carbon black, and chloroform as the solvents. P3HT provides high reproducibility and conductivity by improving the ink dispersibility. The conductivity of the ink is optimized by adjusting the composition of the carbon black and PDMS. Soft lithography is used to fabricate a conductive elastic structure with an isotropic wrinkled structure. Two conductive elastic structures with an isotropic wrinkle structure is stacked to develop a pressure sensor, and it is confirmed that the isotropic wrinkle structure is more sensitive to pressure than when two elastic structures with an anisotropic wrinkle structure are overlapped. Specifically, the pressure sensor fabricated with an isotropic wrinkled structure can detect extremely low pressures (1.25 Pa). Additionally, the sensor has a high sensitivity of 15.547 kpa-1 from 1.25 to 2500 Pa and a linear sensitivity of 5.15 kPa-1 from 2500 Pa to 25 kPa.

A Study on the Embedded Capacitor for PCB (PCB용 임베디드 캐패시터에 관한 연구)

  • Hong, Soon-Kwan
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.4
    • /
    • pp.1-6
    • /
    • 2005
  • Recently embedded passive technology which fabricate passive elements such as resistors and capacitors at the inner layer of PCB(Printed Circuit Board) is used to make high performance IT products. However, embedded capacitor has limit in full range circuit applications because of the low capacitance density. In this paper, a new embedded capacitor which has wrinkled electrodes and dielectric layer was proposed to overcome the limits. FEM(Finite Elements Method) technique was used to evaluate capacitance density of the wrinkled type embedded capacitor. Capacitance density of the wrinkled type embedded capacitor is larger than that of conventional planar type embedded capacitor by about 25.6%$\sim$39.6%. In case of thin film type embedded capacitor, proposed wrinkled structure has more enhanced effect on the capacitance density.

The effect of Volume Expansion on the Propagation of Wrinkled Laminar Premixed Flame

  • Chung, E.H.;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.139-154
    • /
    • 1998
  • Under certain circumstance, premixed turbulent flame can be treated as wrinkled thin laminar flame and its motion in a hydrodynamic flow field has been investigated by employing G-equation. Past studies on G-equation successfully described certain aspects of laminar flame propagation such as effects of stretch on flame speed. In those studies, flames were regarded as a passive interface that does not influence the flow field. The experimental evidences, however, indicate that flow field can be significantly modified by the propagation of flames through the volume expansion of burned gas. In the present study, a new method to be used with G -equation is described to include the effect of volume expansion in the flame dynamics. The effect of volume expansion on the flow field is approximated by Biot-Savart law. The newly developed model is validated by comparison with existing analytical solutions of G -equation to predict flames propagating in hydrodynamic flow field without volume expansion. To further investigate the influence of volume expansion, present method was applied to initially wrinkled or planar flame propagating in an imposed velocity field and the average flame speed was evaluated from the ratio of flame surface area and projected area of unburned stream channel. It was observed that the initial wrinkling of flame cannot sustain itself without velocity disturbance and wrinkled structure decays into planar flame as the flame propagates. The rate of decay of the structure increased with volume expansion. The asymptotic change in the average burning speed occurs only with disturbed velocity field. Because volume expansion acts directly on the velocity field, the average burning speed is affected at all time when its effect is included. With relatively small temperature ratio of 3, the average flame speed increased 10%. The combined effect of volume expansion and flame stretch is also considered and the result implied that the effect of stretch is independent of volume release.

  • PDF

A study of turbulent premixed flame structure in a plane shear layer (평면전단층의 난류예혼합 화염의 구조에 관한 실험적 연구)

  • 이재득;최병륜
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.33-39
    • /
    • 1989
  • A turbulent premixed flames of layer formed between burned hot gas and unburned mixture were investigated by means of schlieren photograph with fluctuations of temperature and ion current. The combustion intensity between burned hot gas and shear layer was higher than the intensity between unburned mixture and shear layer. A wrinkled laminar flame and flamelet were appeared at downstream to exist and distributed reaction zone was at upstream as a result of analyzed probability density functions of temperature fluctuation. The initial combustion intensity of reaction zone of eddy between burned hot gas and shear layer was higher than that of final, flowing downstream, and vice versa between unburned mixture and shear layer.

  • PDF

Characterization and Taxonomic Classification of S85, a new Microsporidia, isolated from the Silkworm, Bombyx mori L. (가잠에서 분리된 새로운 미포자충(S85)의 특성 및 분류학적 위치(1) - 포자의 미세구조 -)

  • Jo, Se-Yun;Son, Hae-Ryong;Im, Jong-Seong
    • Journal of Sericultural and Entomological Science
    • /
    • v.31 no.2
    • /
    • pp.113-120
    • /
    • 1989
  • A new microsporidia (S85) was isolated from the silkworm, Bombyx mori L. in Suwon, Korea in 1985. The electron microscopic observation of the fine structure of the spore was studied for the characterization of the new microsporidia and its taxonomic position. The sporewall was composed of three different electron dense layers and the spore surface was rouph and wrinkled. The polaroplast has two parts which differed in the arrangement of the lamellae. The polarfilament was isofilar with thirteen coils and it was consisted of eight concentric layers of different electron density. The spore contained a single nucleus and the pansporoblast appeared as a thin ballon-like structure surrounding the spore. The membrane was generally smooth and shown occationally wrinkled.

  • PDF

A Discussion of Combustion Regime Based on Laser Tomography and Flame Structure Diagram (레이저 토모그래피와 화염구조선도에 의한 연소영역의 검토)

  • Kim, J.H.
    • Journal of Power System Engineering
    • /
    • v.2 no.1
    • /
    • pp.17-24
    • /
    • 1998
  • The combustion regime was discussed using a laser tomography and flame structure diagram. It was shown first how to represent the turbulent burning velocity and flame structural parameters in the dimensionless plane referred to as the flame structure diagram. And then, turbulent flame structure from the obtained images by laser tomography was compared with combustion regime in the Re-Da plane, one of the diagrams, specified by different researchers. As the result, the $u'/S_{L0}$ ratio at the boundary between the wrinkled laminar flame regime and reactant islands flame regime was found to be about 1.5.

  • PDF

Experimental Study of Dynamic Behavior of a Water Droplet on Diverse Wrinkling Surfaces (마이크로 표면주름 구조에 따른 물방울 동적거동에 관한 실험적 연구)

  • Baek, Dae Hyeon;Zhao, Zhijun;Park, Sang-Hu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.6
    • /
    • pp.577-585
    • /
    • 2015
  • We fabricated multi-scale such as macro-, micro-, and multi-scale wrinkles by using repetitive volume dividing (RVD) method and thermal curing process. Also wrinkle surface was modified with coating of a self-assembled monolayer (SAM). We measured the contact angle of each wrinkled surface, and observed the behavior of droplets on sloping surface. Through experimental study, we found out that the contact angle was much higher in case of multi-scale and SAM coated wrinkles. And micro-scale wrinkle showed a high contact angle comparing with that of macro-scale wrinkle. Dynamic behaviors of a water droplet like sliding velocity on diverse wrinkled surfaces were dependent on their static contact angles. These results showed that hydro-dynamic characteristics were changed depending on the wrinkle structure and the material forming the wrinkle. These dynamic characteristics can be utilized in bio-chip, microfluidics, and many others in order to control easily chemical reactivity.

A study on the development of liquefied natural gas-fired combustor (액화천연가스 연소기개발에 관한 연구)

  • 최병륜;오상헌;김덕줄
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.107-118
    • /
    • 1986
  • The presenet research attempts to examine the combustion characteristics and the structure of the flame in turbulent premixed flames and thus enhance the combustion performance that leads to the design of the effective combustion system (untilizing LNG). Following experimental investigations for several stabilized premixed flames were attempted to identify the interactive mechanism between flame structures and flow fields; Visualization by Schlieren method, measurement of flow velocity by LDV, detection of ion current by ion probe, measurement of fluctuating temperature by thermocouple having compensation circuit, average values with respect to time of fluctuating amount for flow velocity, temperature, ion current, etc., variable RMS values, PDFs, autocorrelation, crosscorrelation, spatial macroscale, power spectra, and velocity scale. Continuing the authors published studies whose flame dominated by coherent structures and the characteristics of combustion reaction for irregular three dimensional flame and stabilized flame by step were investigated with obtained experimental quantities. Results of this research are following : The most turbulent flames support the structure of a Wrinkled laminar flame or laminar flamelets. It also observed that combustion reaction is related to small tubulence microscales of the turbulent flow fields closly.

  • PDF

Nonlinear Analysis of Inflatable Membrane Structures with Wrinkling Effect (주름 효과를 고려한 팽창형 막 구조물의 비선형 해석)

  • Roh, Jin-Ho;Yoo, Eun-Jung;Han, Jae-Hung;Lee, In;Kang, Wang-Gu;Yeom, Chan-Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.33-38
    • /
    • 2005
  • The large deformation of inflatable membrane structure is numerically and experimentally considered in this paper. The numerical algorithm of wrinkling based on Miller and Hedgepeth membrane theory is developed using user material(UMAT) subroutine written by FORTRAN. Wrinkled area and deformed shapes of inflatable membrane structures are investigated by using ABAQUS with UMAT subroutine of wrinkling algorithm.

Thermoelastic Behaviors of Fabric Membrane Structures

  • Roh, Jin-Ho;Lee, Han-Geol;Lee, In
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.319-332
    • /
    • 2008
  • The thermoelastic behaviors of an inflatable fabric membrane structure for use in a stratospheric airship envelope are experimentally and numerically investigated. Mechanical tensile properties of the membrane material at room, high, and low temperatures are measured using an $Instron^{(R)}$ universal testing machine and an $Instron^{(R)}$ thermal chamber. To characterize the nonlinear behavior of the inflated membrane structure due to wrinkling, the bending behavior of an inflated cylindrical boom made of a fabric membrane is observed at various pressure levels. Moreover, the envelope of a stratospheric airship is numerically modeled based on the thermoelastic properties of the fabric membrane obtained from experimental data, and the wrinkled deformed shape induced by a thermal load is analyzed.