• Title/Summary/Keyword: Woven Fabric Structure

Search Result 105, Processing Time 0.035 seconds

Effect of hot press time on the structure characteristics and mechanical properties of silk non-woven fabric

  • Kim, Ye Eun;Bae, Yu Jeong;Seok, Young Seek;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.44 no.1
    • /
    • pp.12-20
    • /
    • 2022
  • In this research, the silk web was hot-pressed for various times, the effect of press time on the structure and mechanical properties of silk non-woven fabric was also investigated. The yellowing appeared in the silk non-woven fabric and became more apparent as press time was increased. The crystallinity of silk was decreased by the hot press treatment and it did not change significantly with an increase of hot press time. The porosity of silk non-woven fabric was constantly decreased until 120 s and it did not change much after that. The thickness of silk non-woven fabric was significantly decreased by a press time of 10 s and slightly decreased with a further increase of hot press time. The hot press treatment increased the maximum stress and elongation of silk non-woven fabrics. The press time had a significant impact on the mechanical properties of silk non-woven fabric, with 90 s being the optimum condition for the best work of rupture of silk non-woven fabric.

A Study on Moisture Related Properties and Human Sensations of Underwear (1) -A Study on Water and Water Vapor Transport characteristics of Underwear Fabrics- (시판 내의류소재의 수분특성 및 착용감에 관한 연구 (I) -시판 내의류 소재의 수분특성-)

  • 이순원
    • Journal of the Korean Home Economics Association
    • /
    • v.26 no.4
    • /
    • pp.1-13
    • /
    • 1988
  • The purpose of this study is to investigate water and after vapor transport characteristics of underwear fabrics. Experimental materials were cotton woven fabric and cotton knitted fabric, nylon tricot (untreated and hydrophilic finished) and cotton/polyester/cotton triple layer. Cotton knitted fabric have three types of knit structure (interlock, rib, plain stitch) and knit with either 38's or 60's combed yarn. And cotton woven fabric have plain weave with 60's combed yarn. As experimental methods, vapor cup test, dynamic method, vertical wicking test and transplanar uptake test were used. The results are as follows. 1) In cotton specimens, the order of water vapor transpiration (wvt) was plain > rib > interlock in the same yarn diameter. The knit fabric of thinner yarn showed the better wvt among the same knit structure. 2) In cotton specimens, the order of water absorbency was interlock > rib > plain in the same yarn diameter. the knit fabric of thicker yarn showed the better absorbency among the same knit structure. 3) When knit fabric (60's plain) is compared with woven fabric 960's plain), knit fabric showed faster rate of wvt, more amount of uptake and slower rate of water uptake than woven fabric did. 4) When compared untreated nylon with hydrophilic finished nylon, hydrophilic finished nylon showed much more water absorbency than untreated nylon did, but showed same rate of wvt. 5) The water transport characteristics of triple layer underwear fabric showed that the thinner and the lighter one, the better wvt and absorbency did.

  • PDF

A Study on the Thermal Resistance of Wool Fabric Constructions (의류직물의 구성조건에 따른 열저항 특성 연구)

  • Kim, Tae-Hoon;Jun, Byung-Ik
    • Fashion & Textile Research Journal
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 2001
  • The purpose of this study was to determine the thermal characteristics of men's suits ensembles and their fabrics. For the study, 100% wool fabrics were woven with various fabric structure, fabric density and yam count and With the use of these, 12 men's suits were made with the same design. Physical characteristics that affect thermal transport properties, including drapery, cover factor; bulk density, keeping warmth ratio, vapor permeability, air permeability and porosity of the fabrics were measured. In addition, thermal resistance of men's suit ensembles, including Y-shirts, inner wear and socks was measured on the thermal manikin in the environmental chamber. The result of the study was as follows: 1. In terms of fabric structure, keeping warmth ratio of plain woven fabrics was higher than those of twill and satin woven fabrics and also, vapor and air permeability and porosity of plain woven fabrics were higher than those of twill and satin woven fabrics. 2. The result showed that thermal resistance of 12 ensembles were in the range of 0.77clo~0.97clo. 3. There was little correlation between woven condition such as, including structure, fabric density and yam count and thermal resistance of ensembles.

  • PDF

Fabrication and Characteristics of Chitosan Non-woven Fabric developed using only water as plasticizer

  • Lee, Shin-Hee;Hsieh, You-Lo
    • Fashion & Textile Research Journal
    • /
    • v.16 no.2
    • /
    • pp.319-325
    • /
    • 2014
  • This article describes a method for producing chitosan non-woven fabrics by just hot pressing without the use of a binder. A study has been made of the wet spinning of chitosan fiber. The fibers were rinsed thoroughly in running water and chopped wet into staples of with a length of approximately 5-10 mm. The chopped chitosan staples were dispersed uniformly in water and fabricated using a non-woven making machine. This study examined the formation and the characteristics of chitosan non-woven fabrics manufactured by hot pressing without the use of a binder. The effects of the non-woven fabrication conditions on the thermal, morphological, structural, and physical properties of chitosan non-woven fabric with and without water as a plasticizer were studied. The temperature of the exothermic peak, decomposition of chitosan fibers increased with increasing heating rate. Water in the chitosan fiber effectively plasticized the chitosan fiber. The thermal bonded structure of the wet chitosan fiber with water as a plasticizer was clearly found in many parts of the non-woven fabric at a fabrication temperature of $200^{\circ}C$. The intensity and profile of the (100) plane($2{\theta}=10.2^{\circ}$) and (040) plane($2{\theta}=20.9^{\circ}$) in the chitosan non-woven fabric decreases and became smooth in the non-woven fabric formation by melting.

A Study on Absorption Amount of Water-Repellency Processed Non-Woven Fabric in PVC Composite Waterproofing Sheet of A Multi-Layer Structure (다층막 구조형 PVC 복합방수시트 내 발수 처리된 부직포의 흡수량에 관한 연구)

  • An, Ki-Won;Heo, Neung-Hoe;Oh, Je-Gon;Go, Gun-Woong;Go, Jang-Ryeol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.163-164
    • /
    • 2014
  • This study is conducted for prevent spread of penetration water and water leakage through non-woven fabric between PVC sheet and PVC sheet in the PVC composite waterproofing sheet of a multi-layer structure. For this, carry out absorption amount test to confirm spread resistance performance after manufacturing PVC composite waterproofing sheet of a multi-layer structure using water-repellency processed non-woven fabric. As a result of test, weight of water-repellency processed non-woven fabric increased to 1.178g, Compared with beginning and there are not penetration water.

  • PDF

Behaviour of the Twill Weave Woven Fabrics during Relaxation

  • Alamdar-Yazdi A.
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.306-312
    • /
    • 2005
  • This work looks into the behaviour of the twill weave woven fabrics during relaxation (when the weaving tension is released). Ten, 50-metre rolls of twill weave woven fabrics were produced. The fabrics were marked in a rectangular form at the weaving loom. After 48 hours of relaxation, the new shapes and sizes were recorded. The shapes of almost all of the samples were changed to parallelogram, even though they differed in size. The work showed that the manner of fabric deformation during relaxation depends upon the fabric structure. It indicates that contraction due to relaxation of the twill weave causes the woven fabric to skew. in the direction of the twill. The quantity of the skewness is related to the float length and the twill type. Fabrics with longer float length have higher skewness.

Electromagnetic Interference shielding effectiveness of carbon black / Glass fiber woven roving and Carbon fiber unidirectional fabric reinforced composite (카본블랙/섬유강화 복합재료의 전자파 차폐효과)

  • Kim J.S.;Han G.Y.;Ahn D.G.;Lee S.H.;Kim M.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1322-1325
    • /
    • 2005
  • The main objectives of this research work are to develop conductive glass fiber woven roving and carbon fiber unidirectional fabric composite materials and to determine their electromagnetic shielding effectiveness(EMSE). Epoxy is the matrix phase and glass, carbon fiber are the reinforcement phase of the composite material. Carbon black are incorporated as conductive fillers to provide the electromagnetic shielding properties of the composite material. The amount of carbon black in the composite material is varied by changing the carbon black composition, woven roving and unidirectional (fabric) structure. The EMSE of various fabric composites is measured in the frequency range from 300MHz to 800MHz. The variations of EMSE of woven roving and unidirectional composites with fabric structure, metal powder composite are described. Suitability of conductive fabric composites for electromagnetic shielding applications is also discussed.

  • PDF

Deodorization Rate according to Zr-MOF Content and the Properties from Spinning Conditions of Polypropylene Non-woven Fabric Manufactured by Melt-blown Method (Melt-blown법에 의해 제조된 Polypropylene 부직포의 방사 조건별 특성과 기능화된 Zr-MOF 함유량에 따른 소취율 변화에 대한 연구)

  • Choi, Ik-Sung;Min, Mun-Hong;Kim, Han-Il;Lee, Woo-Seung;Noh, Kyung-Gyu;Park, Seong-Woo
    • Textile Coloration and Finishing
    • /
    • v.30 no.3
    • /
    • pp.199-207
    • /
    • 2018
  • In this study, the properties of polypropylene(PP) non-woven fabric spun under various conditions by the Melt-blown method were verified, and the deodorant content and deodorization of PP non-woven fabric after deodorant-treatment were investigated. PP non-woven fabrics are manufactured by varying the temperature of spin beam, hot air temperature and amount, the RPM of collector R/O and the distance between collector and spinneret, which affects the structure of the non-woven fabric. After that, the structural characteristics and air permeability of the non-woven fabric were measured. The experimental results show that the amount of air, the distance between the collector and the spinneret significantly affect the structural characteristics and air permeability of the PP non-woven fabric. And, regardless of the weight of the PP non-woven fabric, the deodorizing effect of UiO-66 MOF deodorant add-on ratio and content was higher.

Fiber network with superhydrophilic Si-DLC coating

  • Kim, Seong-Jin;Mun, Myeong-Un;Lee, Gwang-Ryeol;Kim, Ho-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.363-363
    • /
    • 2010
  • The high capillarity of a plastic fiber network having superhydrophilic Si-DLC coating is studied. Although the superhydrophilic surface maximize wetting ability on the flat surface, there remains a requirement for the more wettable surface for various applications such as air-filters or liquid-filters. In this research, the PET non-woven fabric surface was realized by superhydrophilic coating. PTE non-woven fabric network was chosen due to its micro-pore structure, cheap price, and productivity. Superhydrophobic fiber network was prepared with a coating of oxgyen plasma treated Si-DLC films using plasma-enhanced chemical vapor deposition (PECVD). We first fabricated superhydrophilic fabric structure by using a polyethylene terephthalate (PET) non-woven fabric (NWF) coated with a nanostructured films of the Si-incorporated diamond-like carbon (Si-DLC) followed by the plasma dry etching with oxygen. The Si-DLC with oxygen plasma etching becomes a superhydrophilic and the Si-DLC coating have several advantages of easy coating procedure at room temperature, strong mechanical performance, and long-lasting property in superhydrophilicity. It was found that the superhydrophobic fiber network shows better wicking ability through micro-pores and enables water to have much faster spreading speed than merely superhydrophilic surface. Here, capillarity on superhydrophilic fabric structure is investigated from the spreading pattern of water flowing on the vertical surface in a gravitational field. As water flows on vertical flat solid surface always fall down in gravitational direction (i.e. gravity dominant flow), while water flows on vertical superhydrophilic fabric surface showed the capillary dominant spreading.

  • PDF

A Study on Sliding Shear(Mode II) Delamination of Woven Fabric composites for Carbody Structure (차체 구조용 섬유직물 복합재의 평면 전단(mode II) 층간분리 거동에 대한 시험적 연구)

  • Kim, Seung-Chul;Kim, Jung-Seok;Yoon, Hyuk-Jin;Seo, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.557-563
    • /
    • 2010
  • Mode II interlaminar fracture toughness was measured and fractured surfaces were observed of carbon/epoxy and glass/epoxy woven fabric composites for carbody structure. Woven fabric carbon/epoxy and glass/epoxy composites that made with prepreg and epoxy resin(RS1222) are used in carbody structure of Korean tilting train(TTX) and low floor bus. ENF(End Notched Flexure) specimens having $120mm{\times}20m{\times}5mm$ shape and 35mm initial crack were made with each composites and three point bending tests according to ASTM D790 were conducted for these specimens. Crack lengths in tests were recorded using optical microscope and digital camcorder. NL(Non Linear), 5% offset and Max. load points in load -displacement curves were checked and mode II interlaminar fracture toughness of these points were calculated and compared. Fractured surfaces of specimens were observed using optical microscope and mode II delamination behavior of each composites was discussed.

  • PDF