• Title/Summary/Keyword: Wound monitoring

Search Result 46, Processing Time 0.031 seconds

Internal Strain Monitoring of Filament Wound Pressure Tanks using Embedded Fiber Bragg Grating Sensors (삽입된 광섬유 브래그 격자 센서를 이용한 필라멘트 와인딩된 복합재료 압력탱크의 내부 변형률 모니터링)

  • Kim, C.U.;Park, S.W.;Park, S.O.;Kim, C.G.;Kang, D.H.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.17-20
    • /
    • 2005
  • In-situ structural health monitoring of filament wound pressure tanks were conducted during water-pressurizing test using embedded fiber Bragg grating (FBG) sensors. We need to monitor inner strains during working in order to verify the health condition of pressure tanks more accurately because finite element analyses on filament wound pressure tanks usually show large differences between inner and outer strains. Fiber optic sensors, especially FBG sensors can be easily embedded into the composite structures contrary to conventional electric strain gages (ESGs). In addition, many FBG sensors can be multiplexed in single optical fiber using wavelength division multiplexing (WDM) techniques. We fabricated a standard testing and evaluation bottle (STEB) with embedded FBG sensors and performed a water-pressurizing test. In order to increase the survivability of embedded FBG sensors, we suggested a revised fabrication process for embedding FBG sensors into a filament wound pressure tank, which includes a new protecting technique of sensor heads, the grating parts. From the experimental results, it was demonstrated that FBG sensors can be successfully adapted to filament wound pressure tanks for their structural health monitoring by embedding.

  • PDF

Wound-State Monitoring for Burn Patients Using E-Nose/SPME System

  • Byun, Hyung-Gi;Persaud, Krishna C.;Pisanelli, Anna Maria
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.440-446
    • /
    • 2010
  • Array-based gas sensors now offer the potential of a robust analytical approach to odor measurement for medical use. We are developing a fast reliable method for detection of microbial infection by monitoring the headspace from the infected wound. In this paper, we present initial results obtained from wound-state monitoring for burn patients using an electronic nose incorporating an automated solid-phase microextraction (SPME) desorption system to enable the system to be used for clinical validation. SPME preconcentration is used for sampling of the headspace air and the response of the sensor module to variable concentrations of volatiles emitted from SPME fiber is evaluated. Gas chromatography-mass spectrometry studies prove that living bacteria, the typical infectious agents in clinical practice, can be distinguished from each other by means of a limited set of key volatile products. Principal component analysis results give the first indication that infected patients may be distinguished from uninfected patients. Microbial laboratory analysis using clinical samples verifies the performance of the system.

Recent Advancements in Smart Bandages for Wound Healing

  • Ventaka Ramesh Ragnaboina;Tae-Min Jang;Sungkeun Han;Suk-Won Hwang
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.357-369
    • /
    • 2023
  • Wound healing is a complex and dynamic process, making the accurate and timely assessment of skin wounds a crucial aspect of effective wound care management, especially for chronic wounds. Unlike conventional wound dressings that simply cover the wound area once some form of medicine is administered onto the wound, recent studies have introduced versatile approaches to smart wound dressings capable of interacting with wound fluids to monitor physicochemical and pathological parameters to determine the wound healing status. Such electrochemical wound dressings can be integrated with on-demand, closed-loop drug delivery or stimulation systems and ultimately expanded into an ideal technological platform for the prevention, treatment, and management of skin wounds or illnesses. This article briefly reviews the wound healing mechanism and recent strategies for effective wound care management. Specifically, this review discusses the following aspects of smart wound dressings: sensor-integrated smart bandages to detect wound biomarkers, smart bandages developed to accelerate wound healing, and wireless, closed-loop automatic (on-demand) wound healing systems. This review concludes by providing future perspectives on effective wound care management.

KOHONEN NETWORK BASED FAULT DIAGNOSIS AND CONDITION MONITORING OF PRE-ENGAGED STARTER MOTORS

  • BAY O. F.;BAYIR R.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.341-350
    • /
    • 2005
  • In this study, fault diagnosis and monitoring of serial wound pre-engaged starter motors have been carried out. Starter motors are DC motors that enable internal combustion engine (ICE) to run. In case of breakdown of a starter motor, internal combustion engine can not be worked. Starter motors have vital importance on internal combustion engines. Kohonen network based fault diagnosis system is proposed for fault diagnosis and monitoring of starter motors. A graphical user interface (GUI) software has been developed by using Visual Basic 6.0 for fault diagnosis. Six faults, seen in starter motors, have been diagnosed successfully by using the developed fault diagnosis system. GUI software makes it possible to diagnose the faults in starter motors before they occur by keeping fault records of past occurrences.

An Identification Technique Based on Adaptive Radial Basis Function Network for an Electronic Odor Sensing System

  • Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.151-155
    • /
    • 2011
  • A variety of pattern recognition algorithms including neural networks may be applicable to the identification of odors. In this paper, an identification technique for an electronic odor sensing system applicable to wound state monitoring is presented. The performance of the radial basis function(RBF) network is highly dependent on the choice of centers and widths in basis function. For the fine tuning of centers and widths, those parameters are initialized by an ill-conditioned genetic fuzzy c-means algorithm, and the distribution of input patterns in the very first stage, the stochastic gradient(SG), is adapted. The adaptive RBF network with singular value decomposition(SVD), which provides additional adaptation capabilities to the RBF network, is used to process data from array-based gas sensors for early detection of wound infection in burn patients. The primary results indicate that infected patients can be distinguished from uninfected patients.

Successful treatment of a severe open wound in a raccoon dog (Nyctereutes procyonoides): antibiotic susceptibility testing supported

  • Myeongsu Kim;Haerin Rhim;Seulgi Gim;Chang-Eun Lee;Hakyoung Yoon;Jae-Ik Han
    • Korean Journal of Veterinary Research
    • /
    • v.63 no.3
    • /
    • pp.29.1-29.5
    • /
    • 2023
  • An adult raccoon dog with extensive, deep, and contaminated wounds on the right hip and multiple fractures was rescued. The open wound was managed daily by debridement and flushing for 3 weeks. Modified active drainage was then performed, and antibiotics administered according to the antibiotic susceptibility test. After 2 weeks, the exudate disappeared and the drain was removed. After monitoring for 1 month, the animal was released in to the wild. This case shows that even if infection remains, rapid wound repair is possible if appropriate antibiotic selection through regular examination and active drainage are combined.

Guided bone regeneration

  • Kim, Young-Kyun;Ku, Jeong-Kui
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.46 no.5
    • /
    • pp.361-366
    • /
    • 2020
  • Guided bone regeneration (GBR) is a surgical procedure that utilizes bone grafts with barrier membranes to reconstruct small defects around dental implants. This procedure is commonly deployed on dehiscence or fenestration defects ≥2 mm, and mixing with autogenous bone is recommended on larger defects. Tension-free primary closure is a critical factor to prevent wound dehiscence, which is critical cause of GBR failure. A barrier membrane should be rigidly fixed without mobility. If the barrier is exposed, closed monitoring should be utilized to prevent secondary infection.

Technical Papers : Strain Monitoring of Filament Wound Composite Tank Using Fiber Bragg Grating Sensors (기술논문 : 광섬유 브래그 격자 센서를 이용한 필라멘트 와인딩된 복합재료 탱크의 변형률 모니터링)

  • Gang, Hyeon-Gyu;Park, Jae-Seong;Gang, Dong-Hun;Kim, Cheol-Ung;Yun, Hyeok-Jin;Jo, In-Hyeon;Hong, Chang-Seon;Kim, Cheon-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.130-138
    • /
    • 2002
  • 수압실험 동안 광섬유 브래그 격자(FBG) 센서를 이용하여 필라멘트 와인딩된 복합재료 탱크의 변형률을 모니터링하였다. 20개의 FBG 센서와 20개의 스트레인 게이지를 복합재료 탱크의 돔과 실린더 부분에 부착하였다. 광섬유 센서를 위한 고출력 광원으로는 파장 이동 광섬유 레이저(WSFL)을 이용하였다. 실험결과로부터, 많은 수의 센서를 필요로 하는 대형 구조물의 건전성 모니터링에 FBG 센서 시스템이 유용함을 확인할 수 있었다.

Identification of Nursing Diagnosis-Outcome-Intervention (NANDA-NOC-NIC) Linkages in Surgical Nursing Unit (일반외과 입원 환자에 적용되는 간호진단-간호결과-간호중재 연계 확인)

  • Lee, Eun-Ju;Choi, Soon-Hee
    • Korean Journal of Adult Nursing
    • /
    • v.23 no.2
    • /
    • pp.180-188
    • /
    • 2011
  • Purpose: This study was to identify nursing diagnosis-outcome-intervention (NANDA- NOC-NIC: NNN) linkages applied to inpatients in general surgical nursing units. Methods: We developed the NNN linkage computerized nursing process program, which consisted of the 107 nursing outcomes and the 190 nursing interventions linked to the 39 nursing diagnoses. This program was applied to 324 patients who admitted to those nursing units from July, 2004 to February, 2005. Results: First, nursing outcomes of each nursing diagnosis were identified as follows: for 'acute pain', pain control, pain level, and comfort level; for 'risk for infection', wound healing: primary intention, wound healing: secondary intention, and infection status; for 'nausea', nutritional status: food & fluid intake, comfort level, symptom severity and hydration. Second, major nursing interventions for each nursing outcome were analyzed as follows: for pain control or comfort level, pain management and medication management; for pain level, pain management and analgesic administration; for wound healing: primary intention, incision site care and wound care; for Wound healing: secondary intention or infection status, infection control; for nutritional status: food & fluid intake, fluid monitoring; for comfort level, nausea management; for symptom severity, nausea management and vomiting management; for hydration, fluid/electrolyte management. Conclusion: This identified NNN linkages will facilitate the use of nursing process in surgical nursing practice and documentation systems.

Internal Strain Monitoring of Filament Wound Pressure Tanks using Embedded Fiber Bragg Grating Sensors (삽입된 광섬유 브래그 격자 센서를 이용한 필라멘트 와인딩된 복합재료 압력탱크의 내부 변형률 모니터링)

  • Kim C. U.;Park S. W.;Kim C. G.;Kang D. H.
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.1-7
    • /
    • 2005
  • In-situ structural health monitoring of filament wound pressure tanks were conducted during water-pressurizing test using embedded fiber Bragg grating (FBG) sensors. We need to monitor inner strains during working in order to verify the health condition of pressure tanks more accurately because finite element analyses on filament wound pressure tanks usually show large differences between inner and outer strains. Fiber optic sensors, especially FBG sensors can be easily embedded into the composite structures contrary to conventional electric strain gages (ESGs). In addition, many FBG sensors can be multiplexed in single optical fiber using wavelength division multiplexing (WDM) techniques. We fabricated a standard testing and evaluation bottle (STEB) with embedded FBG sensors and performed a water-pressurizing test. In order to increase the survivability of embedded FBG sensors, we suggested a revised fabrication process for embedding FBG sensors into a filament wound pressure tank, which includes a new protecting technique of sensor heads, the grating parts. From the experimental results, it was demonstrated that FBG sensors can be successfully adapted to filament wound pressure tanks for their structural health monitoring by embedding.