• Title/Summary/Keyword: Wound Healing

Search Result 1,262, Processing Time 0.028 seconds

In vitro Study of Nucleostemin as a Potential Therapeutic Target in Human Breast Carcinoma SKBR-3 Cells

  • Guo, Yu;Liao, Ya-Ping;Zhang, Ding;Xu, Li-Sha;Li, Na;Guan, Wei-Jun;Liu, Chang-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2291-2295
    • /
    • 2014
  • Although nucleolar protein nucleostemin (NS) is essential for cell proliferation and early embryogenesis and expression has been observed in some types of human cancer and stem cells, the molecular mechanisms involved in mediation of cell proliferation and cell cycling remains largely elusive. The aim of the present study was to evaluate NS as a potential target for gene therapy of human breast carcinoma by investigating NS gene expression and its effects on SKBR-3 cell proliferation and apoptosis. NS mRNA and protein were both found to be highly expressed in all detected cancer cell lines. The apoptotic rate of the pcDNA3.1-NS-Silencer group ($12.1-15.4{\pm}3.8%$) was significantly higher than those of pcDNA3.1-NS ($7.2-12.0{\pm}1.7%$) and non-transfection groups ($4.1-6.5{\pm}1.8%$, P<0.01). MTT assays showed the knockdown of NS expression reduced the proliferation rate of SKBR-3 cells significantly. Matrigel invasion and wound healing assays indicated that the number of invading cells was significantly decreased in the pcDNA3.1-NS-siRNA group (P<0.01), but there were no significant difference between non-transfected and over-expression groups (P>0.05). Moreover, RNAi-mediated NS down-regulation induced SKBR-3 cell G1 phase arrest, inhibited cell proliferation, and promoted p53 pathway-mediated cell apoptosis in SKBR-3 cells. NS might thus be an important regulator in the G2/M check point of cell cycle, blocking SKBR-3 cell progression through the G1/S phase. On the whole, these results suggest NS might be a tumor suppressor and important therapeutic target in human cancers.

ANXA2 Regulates the Behavior of SGC-7901 Cells

  • Sun, Meng-Yao;Xing, Rui-Huan;Gao, Xiao-Jie;Yu, Xiang;He, Hui-Min;Gao, Ning;Shi, Hong-Yan;Hu, Yan-Yan;Wang, Qi-Xuan;Xu, Jin-Hui;Hou, Ying-Chun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.6007-6012
    • /
    • 2013
  • ANXA2, a member of the annexin family, is overexpressed and plays important roles in tumor development. However, the significance of ANXA2 expression in gastric carcinoma has not been clarified.To elucidate its roles in growth of gastric cancer, ANXA2 expression in SGC-7901 cells was inhibited with a designated siRNA, then cell proliferation, cell cycling, apoptosis and motility were determined by MTT assay, flow cytometry, Hoechst 33342 staining and wound healing assay, respectively. To further assess the behavior of ANXA2 deleted SGC-7901 cells, changes of microstructures were observed under fluorescence microscopy, laser scanning confocal microscopy and electron microscopy. We found that inhibition of ANXA2 expression caused cell proliferation to decrease significantly with G1 arrest, motility to be reduced with changes in pseudopodia/filopodia structure and F-actin and ${\beta}$-tubulin expression, and apoptosis to be enhanced albeit without significance. At the same time, ANXA2 deletion resulted in fewer pseudopodia/filopodia, non-stained areas were increased, contact inhibition among cells reappeared, and expression of F-actin and ${\beta}$-tubulin was decreased, with induction of polymerized disassembled forms. Taken together, these data suggest that ANXA2 overexpression is important to maintain the malignancy of cancer cells, and this member of the annexin family has potential to be considered as a target for the gene therapy of gastric carcinoma.

MicroRNA-101 Inhibits Cell Proliferation, Invasion, and Promotes Apoptosis by Regulating Cyclooxygenase-2 in Hela Cervical Carcinoma Cells

  • Huang, Fei;Lin, Chen;Shi, Yong-Hua;Kuerban, Gulinar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5915-5920
    • /
    • 2013
  • Aim: Although aberrant miRNA expression has been documented, altered miR-101 expression in cervical cancer and its carcinogenic effects and mechanisms remain unexplored. The aim of our study was to investigate the role of miR-101 alteration in cervical carcinogenesis. Methods: Expression of miR-101 was examined by quantitative real-time reverse transcriptase PCR (qRT-PCR) in Hela cells. After modulating miR-101 expression using miR-101 mimics, cell growth, apoptosis and proliferation, and migration were tested separately by MTT or flow cytometry and cell wound healing assay and protein expression was detected by qRT-PCR. The expression of COX-2 in Hela cell was also examined by immunohistochemical staining and the correlation with miR-101 expression was analysed. Results: The miR-101 demonstrated significantly low expression in Hela cell. When we transfected miR-101 mimics into Hela cells, the modulation of miR-101 expression remarkably influenced cell proliferation, cycling and apoptosis: 1) The expression of microRNA-101 tended to increase after transfection; 2) Overexpression of miR-101 was able to promote cell apoptosis, the apoptosis rate being markedly higher (97.6%) than that seen pre-transfection (12.2%) (P<0.05); 3) The miR-101 negatively regulates cell migration and invasion, scratch results being lower ($42.7um{\pm}2um$) than that observed pre-transfection ($181.4um{\pm}2um$); 4) miRNA-101 inhibits the proliferation of Hela cells as well as the level of COX-2 protein, which was negatively correlated with miR-101 expression. Conclusions: Overexpression of miR-101 has obvious inhibitory effects on cell proliferation, migration and invasion. Thus reduced miR-101 expression could participate in the development of cervical cancer at least partly through loss of inhibition of target gene COX-2, which probably occurs in a relative late phase of carcinogenesis. Our data suggest an important role of miR-101 in the molecular etiology of cancer and indicate potential application of miR-101 in cancer therapy.

H2O2 Inhibits Proliferation and Mediates Suppression of Migration via DLC1/RhoA Signaling in Cancer Cells

  • Ma, Long;Zhu, Wen-Zhen;Liu, Ting-Ting;Fu, Hui-Ling;Liu, Zhao-Jun;Yang, Bing-Wu;Song, Tai-Yu;Li, Guo-Rong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.4
    • /
    • pp.1637-1642
    • /
    • 2015
  • Background: RhoGTPase-activating proteins (RhoGAPs) regulate RhoGTPases in cells, but whether individual reactive oxygen species (ROS) regulate RhoGAPs is unknown. Our previous published papers have shown that deleted in liver cancer 1 (DLC1) inhibits cancer cell migration by its RhoGAP activity. The present study was designed to explore the role of $H_2O_2$ in regulation of DLC1. Materials and Methods: We treated cells with $H_2O_2$ for 24h and phenotypic changes were analyzed by MTT, RT-PCR, Western blotting, immunofluorescence staining and wound healing assays. Results: $H_2O_2$ downregulated cyclin D1 and cyclin E to inhibit proliferation, and upregulated BAX to induce apoptosis in MCF-7 cells. Compared with non-tumorigenic cells, $H_2O_2$ increased expression of DLC1 and reduced activity of RhoA in cancer cells. Stress fiber production and migration were also suppressed by $H_2O_2$ in MDA-MB-231 cells. Conclusions: Our study suggests that $H_2O_2$ inhibits proliferation through modulation of cell cycle and apoptosis-related genes, and inhibits migration by decreasing stress fibers via DLC1/RhoA signaling.

2-deoxy-D-Glucose Synergizes with Doxorubicin or L-Buthionine Sulfoximine to Reduce Adhesion and Migration of Breast Cancer Cells

  • Mustafa, Ebtihal H;Mahmoud, Huda T;Al-Hudhud, Mariam Y;Abdalla, Maher Y;Ahmad, Iman M;Yasin, Salem R;Elkarmi, Ali Z;Tahtamouni, Lubna H
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3213-3222
    • /
    • 2015
  • Background: Cancer metastasis depends on cell motility which is driven by cycles of actin polymerization and depolymerization. Reactive oxygen species (ROS) and metabolic oxidative stress have long been associated with cancer. ROS play a vital role in regulating actin dynamics that are sensitive to oxidative modification. The current work aimed at studying the effects of sub-lethal metabolic oxidative stress on actin cytoskeleton, focal adhesion and cell migration. Materials and Methods: T47D human breast cancer cells were treated with 2-deoxy-D-glucose (2DG), L-buthionine sulfoximine (BSO), or doxorubicin (DOX), individually or in combination, and changes in intracellular total glutathione and malondialdehyde (MDA) levels were measured. The expression of three major antioxidant enzymes was studied by immunoblotting, and cells were stained with fluorescent-phalloidin to evaluate changes in F-actin organization. In addition, cell adhesion and degradation ability were measured. Cell migration was studied using wound healing and transwell migration assays. Results: Our results show that treating T47D human breast cancer cells with drug combinations (2DG/BSO, 2DG/DOX, or BSO/DOX) decreased intracellular total glutathione and increased oxidized glutathione, lipid peroxidation, and cytotoxicity. In addition, the drug combinations caused a reduction in cell area and mitotic index, prophase arrest and a decreased ability to form invadopodia. The formation of F-actin aggregates was increased in treated T47D cells. Moreover, combination therapy reduced cell adhesion and the rate of cell migration. Conclusions: Our results suggest that exposure of T47D breast cancer cells to combination therapy reduces cell migration via effects on metabolic oxidative stress.

Effect of Podophyllotoxin Conjugated Stearic Acid Grafted Chitosan Oligosaccharide Micelle on Human Glioma Cells

  • Wang, Geng Huan;Shen, He Ping;Huang, Xuan;Jiang, Xiao Hong;Jin, Cheng Sheng;Chu, Zheng Min
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.6
    • /
    • pp.698-706
    • /
    • 2020
  • Objective : To study the physiochemical characteristics of podophyllotoxin (PPT) conjugated stearic acid grafted chitosan oligosaccharide micelle (PPT-CSO-SA), and evaluate the ability of the potential antineoplastic effects against glioma cells. Methods : PPT-CSO-SA was prepared by a dialysis method. The quality of PPT-CSO-SA including micellar size, zeta potential, drug encapsulation efficiency and drug release profiles was evaluated. Glioma cells were cultured and treated with PPT and PPT-CSO-SA. The ability of glioma cells to uptake PPT-CSO-SA was observed. The proliferation of glioma cells was determined by 3-[4, 5-dimethyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay. The apoptosis and morphology of U251 cells were observed by 4',6-Diamidino-2-phenylindole dihydrochloride (DAPI) dye staining. Cell cycle analysis was performed by flow cytometry. The migration ability of U251 cells was determined by wound healing test. Results : PPT-CSO-SA had nano-level particle size and sustained release property. The encapsulation efficiency of drug reached a high level. The cellular uptake percentage of PPT in glioma cells was lower than that of PPT-CSO-SA (p<0.05). The inhibitory effect of PPT-CSO-SA on glioma cells proliferation was significantly stronger than that of PPT (p<0.05). The morphologic change of apoptosis cell such as shrinkage, karyorrhexis and karyopyknosis were observed. The percentage of U251 cells in G2/M phase increased significantly in the PPT-CSO-SA group compared with PPT group (p<0.05). Compared with the PPT group, the cell migration ability of the PPT-CSO-SA group was significantly inhibited after 12 and 24 hours (p<0.05). Conclusion : PPT-CSO-SA can effectively enhance the glioma cellular uptake of drugs, inhibit glioma cells proliferation and migration, induce G2/M phase arrest of them, and promote their apoptosis. It may be a promising anti-glioma nano-drug.

Indol-3-Carbinol Regulated Tight Junction Permeability and Associated-Protein Level and Suppressed Cell Invasion in Human Colon Cancer Cell Line, HT-29 (인돌 (Indol-3-Carbinol)이 인체대장암세포 HT-29 세포의 투과성 밀착결합조절과 세포 침윤성 억제에 미치는 영향)

  • Kim, Sung-Ok;Choi, Yung-Hyun;Choe, Won-Kyung
    • Journal of Nutrition and Health
    • /
    • v.41 no.1
    • /
    • pp.13-21
    • /
    • 2008
  • To determine whether indol-3-carbinol (BC, $C_9H_9NO$), an autolysis product of a glucosinolate and a glucobrassicin in vegetables, regulated tight junction proteins (TJ) and suppressed cell invasion in colon cancer cells, this experiment was performed. Our results indicate that I3C inhibit cell growth of HT-29 cells in a dose (0, 50, $100{\mu}M$) and time (0, 24 and 48h) dependent manner. Using the wound healing and matrigel invasion study, respectively, BC inhibits the cell motility and invasion of the ovarian cancer cell line. The TEER values were increased in HT-29 cells grown in transwells treated with BC, reversely, paracellular permeability was decreased in those of condition. Claudin-1, claudin-5, ZO-1 and occuldin have been shown to be positively expressed in HT-29 coloncancer cells. I3C occurs concurrently with a significant decrease in the levels of those of proteins in HT-29 cells. But E-cadherin level in the HT-29 was increased by I3C. The reduction of claudin-1 and claudin-5 protein levels occurred post-transcriptionaly since their mRNA levels are no difference by I3C. Therefore, our results suggest that I3C may be expected to inhibit cancer metastasis and invasion by tighten the cell junction and restoring tight junction in colon cancer cell line, HT-29.

The Effect of Platelet-Rich Plasma(PRP) on the Survival of the Autologous Fat Graft (혈소판 농축액이 이식된 지방의 생존에 미치는 영향)

  • Kim, Seung Jun;Choi, Won Il;Lee, Byung Il;Park, Seung Ha;Park, Chul;Koo, Sang Hwan
    • Archives of Plastic Surgery
    • /
    • v.34 no.3
    • /
    • pp.291-297
    • /
    • 2007
  • Purpose: Platelet-rich plasma(PRP) contains protein growth factors, which are actively secreted by platelets to promote wound healing. However, it is not clear whether the injection of PRP into the autologous fat grafts increases the survival rate and the degree of angiogenesis. Methods: New Zealand White rabbit ears were injected fat with PRP, saline, insulin or isoproterenol (n=8/each group) for observation of the survival and degree of angiogenesis of the injected fat. The volume of the harvested fat and the degree of angiogenesis from dorsum of rabbit ears were evaluated 4, 8, and 12 weeks after the autologous fat graft. The degree of angiogenesis was measured with microvascular density (MVD) counts. Results: The volume of harvested fat decreased in a time-dependent manner after autologous fat grafts, but the decrease rate in volume of harvested fat was slower in PRP-injected group compared to that of other control groups. The difference in the volume of the harvested fat between PRP-injected group and other control groups became significant from 4 weeks after the autologous fat graft, and was maintained up to 12 weeks. However, there was no significant difference between PRP-injected group and insulin-injected group 8 and 12 weeks after the autologous fat graft. On the contrary, MVD counts increased in a time-dependent manner after autologous fat grafts. The MVD counts were significantly higher in PRP-and insulin-injected groups than in other control groups from 4 weeks after the autologous fat graft, and these differences were maintained up to 12 weeks. There was no correlation between mean platelet numbers and the volume of harvested fat. Conclusion: The present study demonstrates that PRP-injection into autologous fat grafts increases the survival rate and the degree of angiogenesis. Thus, PRP injection with autologous fat grafts would be a promising tool for maintaining the volume of the grafted fat.

Use of platelet-rich plasma and modified nanofat grafting in infected ulcers: Technical refinements to improve regenerative and antimicrobial potential

  • Segreto, Francesco;Marangi, Giovanni Francesco;Nobile, Carolina;Alessandri-Bonetti, Mario;Gregorj, Chiara;Cerbone, Vincenzo;Gratteri, Marco;Caldaria, Erika;Tirindelli, Maria Cristina;Persichetti, Paolo
    • Archives of Plastic Surgery
    • /
    • v.47 no.3
    • /
    • pp.217-222
    • /
    • 2020
  • Background Surgical reconstruction of chronic wounds is often infeasible due to infection, comorbidities, or poor viability of local tissues. The aim of this study was to describe the authors' technique for improving the regenerative and antimicrobial potential of a combination of modified nanofat and platelet-rich plasma (PRP) in nonhealing infected wounds. Methods Fourteen patients met the inclusion criteria. Fat tissue was harvested from the lower abdomen following infiltration of a solution of 1,000 mL of NaCl solution, 225 mg of ropivacaine, and 1 mg of epinephrine. Aspiration was performed using a 3-mm cannula with 1-mm holes. The obtained solution was decanted and mechanically emulsified, but was not filtered. Non-activated leukocyte-rich PRP (naLR-PRP) was added to the solution before injection. Patients underwent three sessions of injection of 8-mL naLR-PRP performed at 2-week intervals. Results Thirteen of 14 patients completed the follow-up. Complete healing was achieved in seven patients (53.8%). Four patients (30.8%) showed improvement, with a mean ulcer width reduction of 57.5%±13.8%. Clinical improvements in perilesional skin quality were reported in all patients, with reduced erythema, increased thickness, and increased pliability. An overall wound depth reduction of 76.6%±40.8% was found. Pain was fully alleviated in all patients who underwent re-epithelization. A mean pain reduction of 42%±33.3% (as indicated by visual analog scale score) was found in non-re-epithelized patients at a 3-month follow-up. Conclusions The discussed technique facilitated improvement of both the regenerative and the antimicrobial potential of fat grafting. It proved effective in surgically-untreatable infected chronic wounds unresponsive to conventional therapies.

The Effect of the Transcriptional Regulation of Sp1 for TGF-β1 and CTGF Expression in Scar Formation (반흔형성 과정에서 Sp1 전사인자 조절에 의한 TGF-β1 및 CTGF의 발현)

  • Park, Dong Man;Sohn, Dae Gu;Han, Ki Hwan;Lee, Sun Young;Chae, Young Mi;Chang, Young Chae;Park, Kwan Kyu
    • Archives of Plastic Surgery
    • /
    • v.33 no.1
    • /
    • pp.39-45
    • /
    • 2006
  • This study is to examine the relationship between TGF-b1 expression and CTGF expression, and to evaluate the effect of Sp1 blockade on the expression of TGF-b1, CTGF and extracellular genes, clones of fibroblasts stably transfected with Sp1 decoy ODN. R-Sp1 decoy ODN was highly resistant to degradation by nucleases or serum, compared to the linear or phosphorothioated-Sp1 decoy ODN. Skin wounds were created on the back of 36 anesthetized rats. They were divided into four groups-the rats with normal skin, with wounded skin without decoy, with wounded skin injected with R-Sp1 decoy, and with wounded skin injected with mismatched R-Sp1 decoy, respectively. Skins were collected at 3rd, 5th, 7th, 14th day after wounding. Cellular RNA was extracted by RT-PCR analysis. TGF-${\beta}1$ and CTGF were deeply related with skin fibrosis during scar formation and it appeared that TGF-${\beta}1$ may cause the induction of CTGF expression. R-Sp1 decoy ODN inhibited TGF-${\beta}1$ and CTGF expression both in cultured fibroblasts and in the skin of rats. These results indicate that targeting Sp1 with R-type decoy efficiently blocks extracellular matrix gene expression, and suggest an important new therapeutic approach to control the scarring in normal wound healing and fibrotic disorders.