• 제목/요약/키워드: Worst case in vehicle system

검색결과 16건 처리시간 0.02초

차량자세제어 최악상황 개발 및 UCC HILS 시스템 기반 성능 평가 (Worst-case Development and Evaluation for Vehicle Dynamics Controller in UCC HILS)

  • 김진용;정도현;정창현;최형진
    • 한국자동차공학회논문집
    • /
    • 제19권6호
    • /
    • pp.30-36
    • /
    • 2011
  • The current test methods are insufficient to evaluate and ensure the safety and reliability of vehicle system for all possible dynamic situation including the worst case such as rollover, spin-out and so on. Although the known NHTSA Sine with dwell steering maneuvers are applied for the vehicle performance assessment, they aren't enough to estimate other possible worst case scenarios. Therefore, it is crucial for us to verify the various worst cases including the existing severe steering maneuvers. This paper includes useful worst case based upon the existing worst case scenarios mentioned above and worst case evaluation for vehicle dynamic controller in simulation basis and UCC HILS. The only human steering angle is selected as a design parameter here and optimized to maximize the index function to be expressed in terms of both yaw rate and side slip angle. The obtained scenarios were enough to generate the worst case to meet NHTSA worst case definition. It has been concluded that the new procedure in this paper is adequate to create other feasible worst case scenarios for a vehicle dynamic control system.

주행 안정성을 고려한 최악 상황 시나리오 도출 및 적용 (Worst Case Scenario Generation on Vehicle Dynamic Stability and Its Application)

  • 정대이;정도현;문기현;정창현;노기한;최형진
    • 한국자동차공학회논문집
    • /
    • 제16권6호
    • /
    • pp.1-9
    • /
    • 2008
  • The current test methods are insufficient to evaluate and ensure the safety and reliability of vehicle system for all possible dynamic situation including the worst case such as rollover, spin-out and so on. Although the known NHTSA J-turn and Fish-hook steering maneuvers are applied for the vehicle performance assessment, they aren't enough to estimate other possible worst case scenarios. Therefore, it is crucial for us to verify the various worst cases including the existing severe steering maneuvers. This paper includes the procedure to search for other useful worst case based upon the existing worst case scenarios mentioned above and its application in simulation basis. The only human steering angle is selected as a design parameter here and optimized to maximize the index function to be expressed in terms of either roll angle or yaw rate. The obtained scenarios were enough to generate the worst case to meet NHTSA worst case definition (ex.2-inch wheel lift). Additionally, as an application, the worst case steering maneuver is acquired for the vehicle to operate with a simple ESP system. It has been concluded that the new procedure in this paper is adequate to create other feasible worst case scenarios for a vehicle system both with an intelligent safety control system and without it.

CAN을 이용한 차체 네트웍 시스템에 대한 Holistic 스케줄링 해석 (Holistic Scheduling Analysis of a CAN based Body Network System)

  • 신민석;이우택;선우명호
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.114-120
    • /
    • 2002
  • In a distributed real-time control system, it is essential to confirm the timing behavior of all tasks because these tasks of each real-time controller have to finish their processes within the specified time intervals called a deadline. In order to satisfy this objective, the timing analysis of a distributed real-time system such as shcedulability test must be performed during the system design phase. In this study, a simple application of CAN fur a vehicle body network system is formulated to apply to a holistic scheduling analysis, and the worst-case execution time (WCET) and the worst-case end-to-end response time (WCRT) are evaluated in the point of holistic system view.

네트워크분석적 의사결정기법을 이용한 철도사고 임시복구시나리오 개발 (Development of Emergency Restoration Scenarios for Railway Accident using Analytic Network Process)

  • 성덕룡;박용걸
    • 대한토목학회논문집
    • /
    • 제31권5D호
    • /
    • pp.727-737
    • /
    • 2011
  • 본 연구에서는 효율적인 철도사고관리 및 복구작업을 위한 임시복구 시나리오를 개발하였다. 문헌조사 및 전문가 설문조사 결과를 통하여 임시복구 Worst Case 선정시기준이 되는 고려항목과 임시복구 시나리오 수립에 필요한 중요항목(event)을 도출하였으며, 임시복구가 가장 힘든 Worst Case로는 터널구간에서 발생하는 철도사고가 선정되었다. 이는 신속한 임시복구를 위해 좁은 공간에서 체계적이고 효율적인 복구절차를 갖추고 숙련된 복구요원 양성이 필요한 것으로 분석되었다. 또한, 본 연구에서는 통계학적 분석기법을 이용하여 임시복구 시나리오 수립 시 중요항목(event)간 중요도(우선순위)를 선정한 결과 임시복구유형중 시설물 붕괴를 가장 우선적으로 복구하고 선로매몰, 차량탈선 순으로 처리함이 복구시간을 단축할 수 있는 것으로 분석되었다. 이는 복구에 많은 시간이 소요되는 순으로 임시복구가 이루어져야 함을 나타낸다. 임시복구 시나리오는 임시복구 Worst Case, 임시복구유형별 중요항목(event)을 종합하여 표준운영절차(안) 11개를 제안하였다. 이를 활용하여 철도사고 DB관리 및 신속한 사고복구를 통해 정시성을 확보하여 열차지연시간을 최소화하는데 크게 기여할 것이다.

Semi-active bounded optimal control of uncertain nonlinear coupling vehicle system with rotatable inclined supports and MR damper under random road excitation

  • Ying, Z.G.;Yan, G.F.;Ni, Y.Q.
    • Coupled systems mechanics
    • /
    • 제7권6호
    • /
    • pp.707-729
    • /
    • 2018
  • The semi-active optimal vibration control of nonlinear torsion-bar suspension vehicle systems under random road excitations is an important research subject, and the boundedness of MR dampers and the uncertainty of vehicle systems are necessary to consider. In this paper, the differential equations of motion of the coupling torsion-bar suspension vehicle system with MR damper under random road excitation are derived and then transformed into strongly nonlinear stochastic coupling vibration equations. The dynamical programming equation is derived based on the stochastic dynamical programming principle firstly for the nonlinear stochastic system. The semi-active bounded parametric optimal control law is determined by the programming equation and MR damper dynamics. Then for the uncertain nonlinear stochastic system, the minimax dynamical programming equation is derived based on the minimax stochastic dynamical programming principle. The worst-case disturbances and corresponding semi-active bounded parametric optimal control are obtained from the programming equation under the bounded disturbance constraints and MR damper dynamics. The control strategy for the nonlinear stochastic vibration of the uncertain torsion-bar suspension vehicle system is developed. The good effectiveness of the proposed control is illustrated with numerical results. The control performances for the vehicle system with different bounds of MR damper under different vehicle speeds and random road excitations are discussed.

소형자동궤도차량 시스템의 그래프 모델 기반 수송능력 추정 (Traffic Capacity Estimate of Personal Rapid Transit System based on Digraph Model)

  • 원진명
    • 제어로봇시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.263-267
    • /
    • 2007
  • This study proposes a new methodology to estimate the traffic capacity of a personal rapid transit(PRT) system. The proposed method comprises three steps. The first step models the guideway network(GN) of PRT as a digraph, where its node and link represent a station and a one-way guideway link between two stations, respectively. Given local vehicle control strategies, the second step formulates the local traffic capacities through the nodes and links of the GN model. The third step estimates the worst-case local traffic demands based on a shortest-path routing algorithm and an empty vehicle allocation algorithm. By comparing the traffic estimates to the local traffic capacities, we can determine the feasibility of the given GN in traffic capacity.

측정기반 최악실행시간 분석 기법을 이용한 AUTOSAR 호환 승용디젤엔진제어기의 실시간 성능 검증에 관한 연구 (Timing Verification of AUTOSAR-compliant Diesel Engine Management System Using Measurement-based Worst-case Execution Time Analysis)

  • 박인석;강은환;정재성;손정원;선우명호;이강석;이우택;연제명;원동훈
    • 한국자동차공학회논문집
    • /
    • 제22권5호
    • /
    • pp.91-101
    • /
    • 2014
  • In this study, we presented a timing verification method for a passenger car diesel engine management system (EMS) using measurement-based worst-case execution time (WCET) analysis. In order to cope with AUTOSAR-compliant software architecture, a development process model is proposed. In the process model, a runnable is regarded as a test unit and its temporal behavior (i.e. maximum observed execution time, MOET) is obtained along with on-target functionality evaluation results during online unit test. Furthermore, a cost-effective framework for online unit test is proposed. Because the runtime environment layer and the standard calibration environment are utilized to implement test interface, additional resource consumption of the target processor is minimized. Using the proposed development process model and unit test framework, the MOETs of 86 runnables for diesel EMS are obtained with 213 unit test cases. Using the obtained MOETs of runnables, the WCETs of tasks are estimated and the schedulability is evaluated. From the schedulability analysis results, the problems of the initially designed schedule table is recognized and it is fixed by redesigning of the runnable mapping and task offset. Through the various test scenarios, the proposed method is validated.

SB2등급 연성베리어의 충돌지점(CIP)에 대한 연구 (Study on Critical Impact Point for a SB2 Class Flexible Barrier)

  • 허연희;김용국;고만기;김기동
    • 한국도로학회논문집
    • /
    • 제15권4호
    • /
    • pp.127-133
    • /
    • 2013
  • PURPOSES : The impact performance of flexible barrier system such as structural response, vehicular motion and occupant safety vary depending on the impact point. Thus, to properly evaluate the performance of a flexible barrier system, impact should be made to a point which will lead to the worst possible results. This point is called the Critical Impact Point (CIP). This paper presents the way to determine the CIP for a SB2 class flexible barrier system which is consisted of Thrie-Beam rail and circular hollow tube post of 2m span. METHODS: Barrier VII simulations were made for impact points; Case 1 at a post, Case 2 at 1/3 span downstream from a post, Case 3 at middle of the span, Case 4 at 2/3 span downstream from a post. For the structural performance (deflections), impact simulation of 8000kg-65km/h-15degree was used, and for vehicle motion and occupant safety, simulation of 1300kg-80km/h-20degree impact was made and analysed. RESULTS: Case 1 gave the largest dynamic deflection of 75.72cm and also gave the largest snag value of 44.3cm. Occupant safety and exit angle of the vehicle after the impact were not sensitive to the impact point and were all below the allowable limit. CONCLUSIONS : For the SB2 class flexible barrier system's CIP can be regarded as a post which is sufficiently away from the end of Length of Need in order to avoid the end-effect of the barrier system. It can be more economic in the long run because the normal concrete pavement material is likely to cost more due to higher probability of maintenance and repair and higher social cost due to traffic accident, etc.

CANopen 네트워크 이용률 감소를 위한 PDO 패킹 메커니즘 (PDO Packing Mechanism for Reducing CANopen Network Utilization)

  • 강민구;박기진;김종철
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제36권2호
    • /
    • pp.124-133
    • /
    • 2009
  • 최근 각광받고 있는 차량 내부 네트워크(In-Vehicle Network)의 일종인 CANopen 프로토콜은 다양한 벤더의 하드웨어 특성에 의존적인 CAN(Controller Area Network) 기반 응용 프로그램 개발의 문제점을 해결하고자 제안되었으며, 프로파일링(Profiling) 개념을 사용하여 CAN과 이의 응용 계층인 CAL(CAN Application Layer)에서 동작하는 모든 하드웨어 장치를 지원함에 따라 CAN 기반 응용 시스템의 개발 기간의 단축이 가능하다. 메시지 처리 성능(예: 최악 응답 시간)을 높이기 위해서는 CANopen 네트워크 이용률(Utilization)을 감소시킬 필요성이 있으며, 이를 위해 가능한 많은 메시지를 패킹(Packing)하여 전송함으로써, 메시지 전송 시 발생하는 메시지 프레임의 오버 헤드를 줄이는 것이 바람직하다. 이에 본 논문에서는 CAN의 응용 계층에서 동작하는 CANopen의 OB(Object Dictionary) 및 PDO(Process Data Object) 통신 서비스를 이용하는 PDO 패킹 메커니즘을 제안하였다. SAE(The Society of Automotive Engineers)에서 제공하는 벤치마크(Benchmark) 자료를 이용하여, 본 논문에서 제안한 메커니즘의 성능을 평가하였으며, 선행 연구에 비해 CANopen 네트워크 이용률이 약 10% 가량 감소하는 것을 확인하였다.

차량 탑재형 안테나 포지셔너의 반사판 지지대 최적설계 (Design Optimization of the Support Frame of an Antenna Positioner Mounted on a Vehicle)

  • 장태호;김영식
    • 한국정밀공학회지
    • /
    • 제31권5호
    • /
    • pp.411-416
    • /
    • 2014
  • In this research we present design optimization methods for a vehicle-mounted satellite antenna positioner. Our initial antenna positioner was conservatively designed to satisfy a worst case scenario where wind blew across the positioner at the speed of 120 km/h. Investigating stresses and safety based on Finite Element Methods (FEM), we find reflector support frames can be optimized to significantly reduce the weight of the positioner system. Thus, we optimize the reflector support frame from the given initial design while considering weight, maximum stress, maximum allowable deflection, cross section, and thickness. As a result, Shape C and the thickness of 2 mm are determined for the cross section of the reflector support frame. Applying this result, the weight of the new antenna positioner is 57.343 kg, which is decreased by 10.74% compared to the initial conservative design.