• Title/Summary/Keyword: Worm Simulation

Search Result 51, Processing Time 0.024 seconds

A Study on Simulation-Based Worm Damage Assessment on ATCIS (시뮬레이션 기반 육군전술지휘정보체계 웜 피해평가에 관한 연구)

  • Kim, Ki-Hwan;Kim, Wan-Ju;Lee, Soo-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.43-50
    • /
    • 2008
  • The army developed the ATCIS(Army Tactical Command Information System) for the battlefield information system with share the command control information through the realtime. The using the public key and the encryption equipment in the ATCIS is enough to the confidentiality, integrity. But, it is vulnerable about the availability with the zero day attack. In this paper, we implement the worm propagation simulation on the ATCIS infrastructure through the modelling on the ATCIS operation environment. We propose the countermeasures based on the results from the simulation.

A Study on the Improvement of Forming Process of Power Assisted Steering Part (PAS부품의 공정개선에 관한 연구)

  • 윤대영;황병복;유태곤
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.265-273
    • /
    • 2000
  • The conventional and new forging processes of the power steering worm blank are analyzed by the rigid-plastic finite element method. The conventional process contains three stages such as indentation, extrusion and upsetting, which was designed by a forming equipment expert. Process conditions such as reduction in area, semi-die angle and upsetting ratio are considered to prevent internal or geometrical defects. The results of simulation of the conventional forging process are summarized in terms of deformation patterns, load-stroke relationships and die pressures for each forming operation. Based on the simulation results of the current three-stage, the power steering worm blank forging process for improving the conventional process sequence is designed. Die pressures and forming loads of proposed process are within limit value which is proposed by experts and the proposed process is found to be proper for manufacturing the power steering worm blank.

  • PDF

Investigation of Surface Roughness Characteristics according to Tool Runout Variations in Side Milling Cutter for Worm Screw (사이드 밀링 커터를 이용한 워엄 스크루 가공에서 공구 런아웃이 표면조도에 미치는 영향분석)

  • Kim, Sun Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.76-82
    • /
    • 2009
  • A worm screw is widely used in a geared motor unit for motion conversion from rotation to linear motion. For mass production of a high quality worm, the current roll forming process is substituted with the milling cutter process. Since the milling cutter process enables the integration of all machining operations of worm manufacturing on a CNC(Computer Numerical Control) lathe, productivity can be remarkably improved. The tooling system for side milling cutter on the CNC lathe to improve machinability is developed. However, the runout of spindle and cutting tips are important factors to be considered for producing high quality worms because the tooling system has multiple tips. In this study, surface roughness variations accuracy according to runout was investigated in side milling cutter for worm screw. The result shows by simulation and experiment.

  • PDF

Dynamic Control of Random Constant Spreading Worm using Depth Distribution Characteristics

  • No, Byung-Gyu;Park, Doo-Soon;Hong, Min;Lee, Hwa-Min;Park, Yoon-Sok
    • Journal of Information Processing Systems
    • /
    • v.5 no.1
    • /
    • pp.33-40
    • /
    • 2009
  • Ever since the network-based malicious code commonly known as a 'worm' surfaced in the early part of the 1980's, its prevalence has grown more and more. The RCS (Random Constant Spreading) worm has become a dominant, malicious virus in recent computer networking circles. The worm retards the availability of an overall network by exhausting resources such as CPU capacity, network peripherals and transfer bandwidth, causing damage to an uninfected system as well as an infected system. The generation and spreading cycle of these worms progress rapidly. The existing studies to counter malicious code have studied the Microscopic Model for detecting worm generation based on some specific pattern or sign of attack, thus preventing its spread by countering the worm directly on detection. However, due to zero-day threat actualization, rapid spreading of the RCS worm and reduction of survival time, securing a security model to ensure the survivability of the network became an urgent problem that the existing solution-oriented security measures did not address. This paper analyzes the recently studied efficient dynamic network. Essentially, this paper suggests a model that dynamically controls the RCS worm using the characteristics of Power-Law and depth distribution of the delivery node, which is commonly seen in preferential growth networks. Moreover, we suggest a model that dynamically controls the spread of the worm using information about the depth distribution of delivery. We also verified via simulation that the load for each node was minimized at an optimal depth to effectively restrain the spread of the worm.

Dynamic Control of Random Constant Spreading Worm Using the Power-Law Network Characteristic (멱함수 네트워크 특성을 이용한 랜덤확산형 웜의 동적 제어)

  • Park Doo-Soon;No Byung-Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.3
    • /
    • pp.333-341
    • /
    • 2006
  • Recently, Random Constant worm is increasing The worm retards the availability of the overall network by exhausting resources such as CPU resource and network bandwidth, and damages to an uninfected system as well as an infected system. This paper analyzes the Power-Law network which possesses the preferential characteristics to restrain the worm from spreading. Moreover, this paper suggests the model which dynamically controls the spread of the worm using information about depth distribution of the delivery node which can be seen commonly in such network. It has also verified that the load for each node was minimized at the optimal depth to effectively restrain the spread of the worm by a simulation.

  • PDF

Simulation and Analysis of Slammer Worm Propagation With Automatic Quarantine (자동 격리를 감안한 슬래머 웜 전파과정에 대한 모의실험 및 분석)

  • Lim, Jae-Myung;Jung, Han-Gyun;Yoon, Chong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8B
    • /
    • pp.529-538
    • /
    • 2007
  • In this paper, we have analyzed a simulation model of Slammer worm propagation process which caused serious disruptions on the Internet in the year of 2003 by using NS-2. Previously we had presented and analyzed Abstract Network to Abstract Network(AN-AN) model being modified from the Detailed Network to Abstract Network(DN-AN) of NS-2. However, packet analysis in AN-AN model had a problem of taking 240 hours to simulate the initial 300 seconds of infection. We have reduced the AN-AN model to save the simulation time and analyzed total 3.5 hours of the network congestions within 107 hours. Moreover, we have derived optimal quarantine rate of 0.0022 considering service outage of network devices caused by the heavy infected traffics, which was not taken into consideration in previous works. As the result of simulation, Although the inbound traffic at the Korean international gateway was back in normal conditions at 4,787 second, due to the revese direction saturation was maintained until 12,600 seconds, the service outage was persisted for 3.5 hours.

Worm Virus Modeling and Simulation Methodology Using Artificial Life. (인공생명기반의 웜 바이러스 모델링 및 시뮬레이션 방법론)

  • Oh Ji-yeon;Chi Sung-do
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.11a
    • /
    • pp.171-179
    • /
    • 2005
  • Computer virus modeling and simulation research has been conducted with focus on the network vulnerability analysis. However, computer virus generally shows the biological virus characters such as proliferation, reproduction and evolution. Therefore it is necessary to research the computer virus modeling and simulation using Artificial Life. The approach of computer modeling and simulation using the Artificial Life technology Provides the efficient analysis method for the effects on the network by computer virus and the behavioral mechanism of the computer virus. Hence this paper proposes the methodology of computer virus modeling and simulation using Artificial Life, which may be contribute the research on the computer virus vaccine.

  • PDF

A Macroscopic Framework for Internet Worm Containments (인터넷 웜 확산 억제를 위한 거시적 관점의 프레임워크)

  • Kim, Chol-Min;Kang, Suk-In;Lee, Seong-Uck;Hong, Man-Pyo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.9
    • /
    • pp.675-684
    • /
    • 2009
  • Internet worm can cause a traffic problem through DDoS(Distributed Denial of Services) or other kind of attacks. In those manners, it can compromise the internet infrastructure. In addition to this, it can intrude to important server and expose personal information to attacker. However, current detection and response mechanisms to worm have many vulnerabilities, because they only use local characteristic of worm or can treat known worms. In this paper, we propose a new framework to detect unknown worms. It uses macroscopic characteristic of worm to detect unknown worm early. In proposed idea, we define the macroscopic behavior of worm, propose a worm detection method to detect worm flow directly in IP packet networks, and show the performance of our system with simulations. In IP based method, we implement the proposed system and measure the time overhead to execute our system. The measurement shows our system is not too heavy to normal host users.

A Scalable Distributed Worm Detection and Prevention Model using Lightweight Agent (경량화 에이전트를 이용한 확장성 있는 분산 웜 탐지 및 방지 모델)

  • Park, Yeon-Hee;Kim, Jong-Uk;Lee, Seong-Uck;Kim, Chol-Min;Tariq, Usman;Hong, Man-Pyo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.5
    • /
    • pp.517-521
    • /
    • 2008
  • A worm is a malware that propagates quickly from host to host without any human intervention. Need of early worm detection has changed research paradigm from signature based worm detection to the behavioral based detection. To increase effectiveness of proposed solution, in this paper we present mechanism of detection and prevention of worm in distributed fashion. Furthermore, to minimize the worm destruction; upon worm detection we propagate the possible attack aleγt to neighboring nodes in secure and organized manner. Considering worm behavior, our proposed mechanism detects worm cycles and infection chains to detect the sudden change in network performance. And our model neither needs to maintain a huge database of signatures nor needs to have too much computing power, that is why it is very light and simple. So, our proposed scheme is suitable for the ubiquitous environment. Simulation results illustrate better detection and prevention which leads to the reduction of infection rate.

An Approach for Worm Propagation Modeling using Scanning Traffic Profiling (스캐닝 트래픽의 프로파일링을 통한 인터넷 웜 확산 모델링 기법)

  • Shon, Tae-Shik;Koo, Bon-Hyun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.5
    • /
    • pp.67-74
    • /
    • 2010
  • Recently, the early detection and prevention of worm research is mainly studying based on the analysis of generalized worm propagation property. However, it is not easy to do Worm early detection with its attributes because the modeling method for Worm propagation is vague and not specified yet. Worm scanning method is exceedingly effect to Worm propagation process. This paper describes a modeling method and its simulations to estimate various worm growth patterns and their corresponding propagation algorithms. It also tests and varies the impact of various improvements, starting from a trivial simulation of worm propagation and the underlying network infrastructure. It attempts to determine the theoretical maximum propagation speed of worms and how it can be achieved. Moreover, we present the feasibility of the proposed model based on real testbed for verification.