• 제목/요약/키워드: Workpiece Temperature

검색결과 156건 처리시간 0.026초

Ti-6Al-4V 합금의 열간성형공정에 대한 계면열전달계수의 결정 (Determination of the interface heat transfer coefficient for hot-forming process of Ti-6Al-4V)

  • 염종택;임정숙;나영상;박노광;신태진;황상무;심인옥
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.299-302
    • /
    • 2003
  • The interface heat transfer coefficient was measured for non-isothermal bulk forming of Ti-6Al-4V. FE analysis and experiments were conducted. Equipment consisting of AISI H13 die was instrumented with thermocouples located at sub-surface of the bottom die. Die temperature changes were investigated in related to the process variables such as reduction, lubricant and initial die temperature. The calibration approach based on heat conduction and FE analysis using an inverse algorithm were used to evaluate the interface heat transfer between graphite-lubricated die and glass-coated workpiece. The coefficients determined determined were affected mainly by the contact pressure. The validation of the coefficients was made by the comparison between experimental data and FE analysis results.

  • PDF

엔드밀 가공시 가공속도에 따른 가공변질층 특성 연구 (A Study on Damaged Layer Characteristics according to Cutting Speed in End-milling)

  • 황인옥;이종환;김전하;강명창;김정석;이득우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.778-781
    • /
    • 2004
  • As the technique of high-speed end-milling is widely adopted to in machining field. The investigation for microscopic precision of workpiece is necessary for machinability evolution. In this study, cutting force, cutting temperature and microhardness were investigated to evaluate damaged layer in conventional machining and high-speed machining. Damaged layer was measured using optical microscope. The thickness of damaged layer depends on cutting process parameters, specially feed per tooth and radial depth. It is obtained that the characteristics of damaged layer is high-speed machining better than conventional machining.

  • PDF

2차원 절삭가공에 대한 강열점소성 유한요소법의 활용 (Application of the Rigid-Thermoviscoplastic Finite Element Method to Orthogonal Cutting Process)

  • 고대철;고성림;박태준
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.965-968
    • /
    • 1997
  • The objective of this study is to develop a rigid-thermoviscoplastic finite element program for the analysis of orthogonal cutting process. Deformation of the workpiece material is considered as rigid-viscoplastic and the numerical solution is obtained from the coupled analysis bctween plastic deformation and temperature field, including treament of temperature dependent material properties. The chip and the burr formation are simulated for the non-steady state orthogonal cutting using the developed program. To validate the program the predicted results at chip and burr format~on stage are compared with the published ones. The case of isothermal cutting process is also considered to study the thermal effect on the machining process.

  • PDF

용적이행을 고려한 GMA 용접의 열원 모델링 (Heat Source Modeling of GMAW Considering Metal Transfer)

  • 정기남;이지혜;이재영;유중돈
    • Journal of Welding and Joining
    • /
    • 제22권2호
    • /
    • pp.69-77
    • /
    • 2004
  • The Gaussian heat source has been widely used to simulate the heat flux of the welding we, and applied to calculating the temperature distribution of a workpiece. The conventional two-dimensional Gaussian heat source for the GMAW is modified in this work by decomposing the arc heat into heats of the cathode and metal transfer. The efficiency and effective arc radius of each heat source are determined analytically for the free-flight mode such as the globular and spray modes. The temperature distribution and weld geometry are calculated using the finite element method, and distribution of the drop heat is found to have significant effects on the penetration. The predicted results show good agreements with the available experimental results, especially with the penetration.

Force Modeling and Machining Characteristics of the Intermittent Grinding Wheels

  • Kwak, Jae-Seob;Ha, Man-Kyung
    • Journal of Mechanical Science and Technology
    • /
    • 제15권3호
    • /
    • pp.351-356
    • /
    • 2001
  • In the surface grinding operations, the grinding fluid cannot be supplied sufficiently in the cutting zone. Temperature generated in the cutting zone increases rapidly and causes thermal damage such as burning on the surface of a workpiece. To reduce thermal damage, the intermittent grinding wheels, which have an excellent cooling effect, have been applied. This paper describes machining characteristics by using intermittent grinding wheels. The grinding force of the intermittent wheels has been simulated by the SIMULAB, which is a program for simulating dynamic systems. Using the intermittent grinding wheels, the characteristics of grinding force, temperature, surface roughness, and geometric error have been evaluated experimently.

  • PDF

AI7075합금의 정밀단조시 금형설계와 단조조건의 영향(l)-실험과 상계해석을 중심으로- (The Effect of Die Design and Process Condition in Precision Forging for AI7075 Alloy(l))

  • 이영선;이정환;정형식;이상용;이동원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 추계학술대회논문집
    • /
    • pp.105-112
    • /
    • 1996
  • Aluminium alloy have been used extensively as forging materials for aircraft components due to their high specific strength and corrosion resistance. A large portions of these materials are used as airframe components consisted of various combination of such Rib-Web structure. But the problem of high forging pressure and defect which were caused by narrow Rib thickness prevented from the favorable developments and laboratory scaled trials. In this study, optimization of forging variables such as corner radius and temperature in Rib-Wed structure were established. The 2 mm of corner radius minimized the forging pressure to get the fixed Rib height, which well coincided with theoretical result according to Upper-Bound analysis. And optimum workpiece temperature was below 450$^{\circ}C$ in consideration of grain growth and forging defects by local melting.

  • PDF

환경친화적 기계가공을 위한 기계적$\cdot$열적측면에서의 절삭유제 사용효과에 관한 연구 (A Study on the Cutting Fluid Effectiveness in Mechanical and Thermal Terms Simultaneously for Environmentally Conscious Machining)

  • 모용구;황준;정의식
    • 한국정밀공학회지
    • /
    • 제17권7호
    • /
    • pp.90-97
    • /
    • 2000
  • This paper presents a methodology to analyze the cutting fluid effectiveness in mechanical and thermal terms simultaneously using finite element method and experimental work. Cutting fluid plays many roles in metal cutting process. Mechanically-thermally coupled effectiveness of cutting fluids affect to friction coefficient at tool-workpiece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, it can be explained that the critical behavior of cutting fluids will be able to apply optimal environmentally conscious machining process.

  • PDF

전기전도성 이방성 복합재료 방전가공의 수치모사 (Numerical Simulation of the Electro-discharge Machining Process of a Conductive Anisotropic Composite)

  • 안영철;천갑재
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.709-712
    • /
    • 2002
  • For the electro-discharge machining of an electro-conductive anisotropic composite, an unsteady state formulation was established and solved by Galerkin's finite element method. The distribution of temperature on work piece, the shape of the crater and the material removal rate were obtained in terms of the process parameters. As the spark was initiated the workpiece immediately started to melt and the heat affected zone was formed. The moving boundary of the crater was also identified with time. When the radial and axial conductivities were increased separately the temperature distribution and the shape of the crater were shifted in the same direction respectively and the material removal rate was found to be higher in the case of increasing radial conductivity rather than the axial conductivity.

  • PDF

Development of new predictive analysis in the orthogonal metal cutting process by utilization of Oxley's machining theory

  • Abdelkader, Karas;Mohamed, Bouzit;Mustapha, Belarbi;Redha, Mazouzi
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1467-1481
    • /
    • 2015
  • This paper presents a contribution to improving an analytical thermo-mechanical modeling of Oxley's machining theory of orthogonal metals cutting, which objective is the prediction of the cutting forces, the average stresses, temperatures and the geometric quantities in primary and secondary shear zones. These parameters will then be injected into the developed model of Karas et al. (2013) to predict temperature distributions at the tool-chip-workpiece interface. The amendment to Oxley's modified model is the reduction of the estimation of time-related variables cutting process such as cutting forces, temperatures in primary and secondary shear zones and geometric variables by the introduction the constitutive equation of Johnson-Cook model. The model-modified validation is performed by comparing some experimental results with the predictions for machining of 0.38% carbon steel.

Experimental Investigation of Laser Spot Welding of Ni and Au-Sn-Ni Alloy

  • Lee, Dongkyoung
    • Journal of Welding and Joining
    • /
    • 제35권2호
    • /
    • pp.1-5
    • /
    • 2017
  • Many microelectronic devices are miniaturizing the capacitance density and the size of the capacitor. Along with this miniaturization of electronic circuits, tantalum (Ta) capacitors have been on the market due to its large demands worldwide and advantages such as high volumetric efficiency, low temperature coefficient of capacitance, high stability and reliability. During a tantalum capacitor manufacturing process, arc welding has been used to weld base frame and sub frame. This arc welding may have limitations since the downsizing of the weldment depends on the size of welding electrode and the contact time may prevent from improving productivity. Therefore, to solve these problems, this study applies laser spot welding to weld nickel (Ni) and Au-Sn-Ni alloy using CW IR fiber laser with lap joint geometry. All laser parameters are fixed and the only control variable is laser irradiance time. Four different shapes, such as no melting upper workpiece, asymmetric spherical-shaped weldment, symmetric weldment, and, excessive weldment, are observed. This shape may be due to different temperature distribution and flow pattern during the laser spot cutting.