• Title/Summary/Keyword: Workpiece Materials

Search Result 284, Processing Time 0.036 seconds

A study on Linear Pattern Fabrication of Plate-type PC (PC소재의 선형 패턴 제작에 관한 연구)

  • Joung, Y.N.;Lee, E.K.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.277-280
    • /
    • 2008
  • Recently, a demand of nano/micro patterned polymer for display or biochip has been rising. Then many studies have been carried out. Nano/micro-embossing is a deformation process where the workpiece materials is heated to permit easier material flow and then forced over a planar patterned tool. In this work, the hot-emboss process is performed with different forming conditions; forming temperature, load, press hold time, to get the proper condition for linear pattern fabrication on plated-type polymers (PC). Replicated pattern depth increases in proportion to the forming temperature, load and time. Reduction of the workpiece thickness increases according to press hold time. In process of time, reduction ratio of workpiece thickness decreases because of surface area increment of the workpiece and pressure decline on it.

  • PDF

Heat Treatment Using a Laser Beam or an Electron Beam (레이저 및 전자빔을 이용한 표면 열처리)

  • 김홍준;최우천;권영각
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.427-432
    • /
    • 1995
  • Surface heat treatment using a laser beam or an electron beam is studied through numerical analyses and experiments. For the surface heat treatment process, a theoretical model is developed to predict the effects of laser beam power, travel speed and properties of a workpiece on the depth and width of the heat affected zone(HAZ). The shape of HAZ and the hardness of heat-treated surface are experimentally obtained using an electron beam. Three materials(SS41, S45C and S55C) are selected as workpiece materials. The hardness of HAZ is increased up to 3 times for materials of a low carbon content. The results of the numerical analysis are compared with those of experiments. The comparison shows that the numerical model predicts larger depths and widths.

Simulation of Stamping of an Automotive Panel using a Finite Element Method (유한요소법을 이용한 자동차 패널의 성형 해석)

  • 이종길;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.76-79
    • /
    • 1997
  • In this study, an elasto-plastic finite element code, ESFORM, was developed to analyze sheet stamping processes. A formulation of 4-node degenerated shell element was implemented in the code. Workpiece materials were assumed to have planar anisotropy, and governed by associated flow rule. Explicit time integration method was employed to save computation time and reduce the required computer memory. Penalty method was used to describe interface behavior between workpiece and rigid die. Deep drawing of square cup and front finder stamping processes were simulated by ESFORM>

  • PDF

A Study on Performance Characteristics of Super-mirror Face Grinding Machine Using Variable Air Pressure (가변 공기압력 초경면 연마기의 성능 특성에 관한 연구)

  • Bae, Myung-Whan;Jung, Hwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.9-16
    • /
    • 2013
  • The comparisons of performance characteristics between the super-mirror face grinding machine using variable air pressure developed in this laboratory to grind precisely the sliding face of a surface hardened workpiece with thermal spray and the conventional one are investigated by measuring the surface roughness and hardness for a SCM440. To process variously workpiece according to shape, size and materials, the rotating and contacting forces of the developed grinding machine can be changed by air pressure. The surface roughness of processed workpiece can be also attained to state of mirror face by grinding precisely the sliding face with changing the rotating speed of diamond wheel. It is possible to be attached to the various machine tools because the super-mirror face grinding machine using variable air pressure is a small size. The grinding efficiency is elevated because it can be worked by two or more grinding machines attached to concurrently a machine tool for the large workpiece. In this study, results show that the cusp height of the super-mirror face grinding machine for the particle size of 100 and $1500No./mm^2$ is lower than that of the conventional one because the vibration is reduced by rotating very fast the diamond wheel with a pressed air and it can be processed by rotating the diamond wheel with a constantly varied air pressure perpendicular to workpiece surface, and that the workpiece in the super-mirror face grinding machine for the particle size of $3000No./mm^2$ can be processed to state of mirror face that is rarely seen by the cusp height. It is also found that the surface hardness of both the conventional and the super-mirror face grinding machines are increased as the particle size of diamond wheel is reduced, and the surface hardness of the super-mirror face grinding machine is HRC 1.1 ~ 1.8 higher than that of the conventional one.

Analysis on Surface Characteristics of the Workpiece in the Grinding by CBN Wheel (CBN 숫돌을 이용한 연삭에서 공작물의 표면성상 분석)

  • Lee, Y. S.;Kwak, J. S.;Ha, M. K.;Koo, Y.;Yoon, M. C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1105-1108
    • /
    • 2001
  • In these days, according s the increase of technological development the part demension goes up for ultra-precision. It is grinding behavior that is important processing which directly influences by machining accuracy at product quality with the net shape manufacturing. In this study, by using CBN wheel an analysis carried out for workpiece's profiles and its characteristics by measuring grinding force and surface roughness. Workpiece materials were used STD11, SUS304 and STB2 varing condition of feedrate and depth of cut.

  • PDF

Deburring Characteristics of Frame Hole in Fishing Trackle Reel (휘싱 트래클 릴 프레임홀 면의 디버링특성)

  • 김정두
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.203-208
    • /
    • 1998
  • Materials of the Frame hole in fishing trackle reel is made up a number large and small holes. Thus, it is difficult to effective machining. Abrasive flow machining(AFM) is useful to polish a internal or external surface of the 3-dimensional shape parts, which are used in many fields such as aerospace, automative, semi-conductor, and medical component industries. The machining process is that two hydraulic cylinders, which are located face to face, enforce abrasive media to the passage between workpiece and tooling parts alternately, and then the abrasives include in the media pass the passage and polish the surface of workpiece. The media which is made of polymer and abrasives plays the role of the tool for deburring or polishing complex shap workpiece by its viscoelastic characteristics. In this study, the abrasive media for abrasive flow machining was made by mixing viscielastic polymer with alunina and silicon carbide abrasive. Also, we present AFM device design and preliminary results of an investigation in to some aspects of the AFM process performance in fishing trackle reel.

  • PDF

Finite Element Analysis to Reduce the Wrinkle Initiation of Workpiece in Groove Rolling (공형압연에서 소재 주름흠 발생 감소를 위한 유한요소해석)

  • Na, D.H.;Cho, O.Y.;Lee, J.H.;Lee, Y.H.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.17 no.5
    • /
    • pp.328-336
    • /
    • 2008
  • A criterion which predicts wrinkle initiation on workpiece in groove rolling process based on finite element analysis is proposed. Fundamental idea considered in the criterion is using the difference between flat rolling which don't cause wrinkling at all and groove rolling which usually accompanies it. The proposed criterion assumes that irregular distribution of shear strain on workpiece during groove rolling is attributable to the initiation of wrinkling. The proposed criterion has been applied to roughing train in the rod mill of SEAH BESTEEL Inc. A new design of 2nd pass (square roll groove) was suggested, machined and applied. Results reveal that the proposed criterion could point out the location of wrinkle initiation and could reduce onset of wrinkle.

Development of FE Analysis Scheme for Milli-Part Forming Using Grain and Grain Boundary Element (입자요소를 이용한 미세 박판 부품의 유한요소 해석 기법 개발)

  • 구태완;김동진;강범수
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.439-446
    • /
    • 2002
  • This study presents a new computational model to analyze the grain deformation in a polycrystalline aggregate in a discrete manner and based directly in the underlying physical micro-mechanisms. When scaling down a metal forming process, the dimensions of the workpiece decrease but the microstructure of the workpiece remains the similar. Since the dimensions of the workpiece are very small, the microstructure especially the grain size will play an important role in micro forming, which is called size effects. As a result, specific characteristics have to be considered for the numerical analysis. The grains and grain boundary elements are introduced to model individual grains and grain boundary facets, respectively, to consider the size effects in the micro forming. The constitutive description of the grain elements accounts for the rigid-plastic and the grain boundary elements for visco-elastic relationships. The capability of the proposed approach is demonstrated through application of grain element and grain boundary element in the micro forming.

An Analytical Study on the Preheating Effect of Workpiece with Cylindrical Shape for 3-Dimensional Laser-Assisted Milling (3 차원 레이저 보조 밀링을 위한 실린더형 시편의 예열효과에 관한 해석적 연구)

  • Woo, Wan-Sick;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.2
    • /
    • pp.173-178
    • /
    • 2015
  • Laser-assisted machining (LAM) is an effective machining method for processing difficult-to-cut materials. Prediction and estimation of preheating effect of the LAM is difficult because of moving heat source. So it is necessary to study the preheating effect of the laser heat source irradiated on the curved surfaces of workpieces of various shape. In this paper, thermal analysis of the LAM for 3-dimentional workpiece with cylindrical shape was performed. The results of this analysis can be applied to obtain the optimal preheating method and path for LAM of 3-dimensional workpiece.

A Study of Interface Heat Transfer Coefficient Between Die and Workpiece for Hot Forging (열간단조시 금형과 소재간 계면열전달계수에 관한 연구)

  • Kwon J. W.;Lee J. H.;Lee Y. S.;Kwon Y. N.;Bae W. B.
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.460-465
    • /
    • 2005
  • The temperature difference between die and workpiece has been frequently caused to various surface defects. The distribution and change for the temperature of forged part should be analyzed to prevent the generation of various defects related with the temperature. The surface temperature changes were affected with the interface heat transfer coefficient. Therefore, the coefficient is necessary to predict the temperature changes of die and workpiece. In this study, the experimental and FE analysis were performed to evaluate the coefficient with a function of pressure, temperature, material, and etc. The closed die upsetting was used to measure the coefficient on pressure over the flow stress. AISI1045, A16061, and Cu-OFHC were used to analyze the effect of material. The coefficient was increased with step-up of pressure between die and workpiece. And, A16061 was larger than that of the AISI1045 and Cu-OFHC up to the five times.