• Title/Summary/Keyword: Workpiece

Search Result 1,346, Processing Time 0.028 seconds

Analysis of wrinkle Initiation on Workpiece in Groove Rolling - Finite Element Analysis (공형압연에서 소재 주름흠 발생 해석 - 유한요소해석)

  • Na, D.H.;Cho, O.Y.;Lee, J.H.;Lee, Y.H.;Lee, Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.415-418
    • /
    • 2008
  • We propose a criterion which predicts wrinkle initiation on workpiece in groove rolling process based on finite element analysis. Fundamental idea introduced in the criterion is to examine the difference between flat rolling which don't' cause wrinkling at all and groove rolling which usually accompanies it. The proposed criterion assumes that irregular distribution of shear strain on workpiece during groove rolling is attributable to the initiation of wrinkling. The proposed criterion has been applied to roughing train in the rod and bar mill of SEAH BESTEEL Inc. A new design for 2nd pass (square roll groove) was suggested, machined and applied. Results reveal that the proposed criterion in this study could point out the location of wrinkle initiation during groove rolling and could reduce onset of wrinkle on final products.

  • PDF

The Prediction of the Cutting Characteristics in Cryogenic Cutting Using Neural Network (신경회로망을 이용한 극저온 절삭특성의 예측)

  • Kim, Chill-Su;Oh, Sueg-Young;Oh, Sun-Sae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.62-70
    • /
    • 1996
  • We experimented on cutting characteristics-cutting force, behavior of cutting temperature, surface roughness. chip thickness under low temperature, which generated by liquid nitrogen(77K). The work-pieces were freezed to-195 .deg. C and liquid nitrogen was also sprinkled on cutting area in order to decrease an experimental error of machining in low temperature. The workpiece was became to -195 .deg. C in5 minutes. In cooled condition surface roughness of workpiece was better than normal condition. In addition, we investigated the possibility that surface roughness of workpiece and cutting force can be predicted analyzing cutting conditions by the trained neural network.

  • PDF

An Experimental Study on New Type Chip Brakeer(Part 1) (신形 칩折斷具에 관한 實驗的 硏究 (제1보))

  • 손명환;이호철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1121-1140
    • /
    • 1992
  • In metal cutting the shape of generated chip varies according to cutting conditions, characteristics of workpiece and geometry of cutting tool. The best surface roughness of machined workpiece is obtained when generating flow type contrinuous chip. If the generated chip is not broken, that is not only tangled workpiece and cutting tool, but also may give damage on the machined surface of workpiece or danger for a operator. The flow type continuous chip may bring the low productivity in high speed any heavy cutting, automatic machining process and non-human factory. There are two type of chip break process ; controlling cutting condition and using chip breaker. In present study we carried out the experiment on new type chip breaker compared with conventional type and proved the efficiency of a new type and showed the chip break condition to be applied in actual metal cutting. In the experiment SM 20 C as a workpiece material and WC as a tool material were used and cutting speed of 30-150m/min, feed of 0.071-0.210mm/rev and depth of cut of 1mm were applied as cutting condition. The results of the experiment are as follows : (1) The mechanism of chip curl can be explained more clearly by plastic flow of workpiece material and moment of shearing force. (2) The most effective radius of curled chip and flat distance from cutting edge is 2.0-2.5mm and 1.5mm in both types. (3) The effective inclination angle of chip break surface and side cutting edge angle are 30.deg.- 45.deg. and 20.deg. in conventional type, while the radius of arc surface, lower arc angle A, upper arc angle B and side cutting edge angle are 3mm, 20.deg.- 45.deg., 0.deg.- 45.deg. and 10.deg.- 20.deg. in new type. (4) The probability to be obtained 100% chip breaking ratio is much higher in new type than in conventional type.

New Trends of Non-Traditional Machining Technology (특수가공기술의 최신동향)

  • 김정두
    • Journal of the Korean Professional Engineers Association
    • /
    • v.34 no.2
    • /
    • pp.10-13
    • /
    • 2001
  • Workpiece materials may be relatively easy to machine by traditional methods but workpiece geometry also may be a constraint. Many shapes that are geometrically difficult to handle conventionally may be candidates for nontraditional processes. Nontraditional processes provide new opportunities for product design innovation and productivity improvements. Difficult-to-machine materials of geometric shapes difficult o produce with traditional equipment and tooling, may often be easily and cost effectively machined using nontraditional processes. Notraditional machining processes are relative newcomers o the manufacturing arena. Nontraditional chemical solutions, or even electrolytic current as the working medium rather than a conventional cutting tool or abrasive to remove or shape materials.

  • PDF

On the machine error measurement and compensation (NC 공정기계에서 온더머신 오차측정 및 보상)

  • 신동수;정성종
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1096-1101
    • /
    • 1992
  • In order tominimize fixing error of workpieces, circle, prismatic, sphere, cylindrical and sculptures types. Modification Rule by Indexing Table and Modification Rule by NC Program are developed for machining centers by using touch trigger probes. The Modification Rule by Indexing Table meas the alignment of workpiece to NC program through degree of freedoms of indexing table. The Modification Rule by NC Program is the alognment of NC program to workpiece ste-tp condition via the generation of NC progarm. A postprocessing module is alos developed for generating NC-part program(User Macro) to compensate for machining errors in end milling and boring processes. Developed method are verified by experiments.

  • PDF

Simulation of Stamping of an Automotive Panel using a Finite Element Method (유한요소법을 이용한 자동차 패널의 성형 해석)

  • 이종길;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.76-79
    • /
    • 1997
  • In this study, an elasto-plastic finite element code, ESFORM, was developed to analyze sheet stamping processes. A formulation of 4-node degenerated shell element was implemented in the code. Workpiece materials were assumed to have planar anisotropy, and governed by associated flow rule. Explicit time integration method was employed to save computation time and reduce the required computer memory. Penalty method was used to describe interface behavior between workpiece and rigid die. Deep drawing of square cup and front finder stamping processes were simulated by ESFORM>

  • PDF

Characteristics of Feed Mechanism in NC Lathe (수치제어선반의 이송특성에 관한 연구)

  • 여인완;박철우;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.104-118
    • /
    • 1998
  • In this paper, the motion of ballscrew and shape of workpiece are the main objective variables varying with load conditions. To verify feed mechanism in NC lathe, the monitoring system is designed and cutting condition variables are spindle speed depth of cut and feed. During machining, rotation number of ballscrew motion of ballscrew in direction to gravity center and cutting force are measured. After machining, the roughness of workpiece is measured.

  • PDF

Study on Dimensional Change in Wire Product During Wire-Drawing Process (선재 인발공정에서 인발제품의 선경변화에 대한 연구)

  • Moon, Chang-Sun;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.723-730
    • /
    • 2012
  • During the cold wire-drawing process, the diameter of a wire is reduced and the length of the wire is increased as the wire passes through the die. The pressure and sliding motion at the interface between the wire and die cause elastic recovery of the workpiece and friction and wear on the die. In addition, wire deformation and frictional heating raise the temperature of the wire and die, resulting in difficulty in manufacturing the drawn products according to a designated inner diameter of the die, deviating from the designated dimension or the inner diameter of the die. In this study, considering the die temperature distribution, the effects of dimensional changes of the drawn products were analyzed quantitatively; these changes are caused by the elastic deformation of the die, the elastic recovery of the workpiece, and the thermal deformation of both the die and the workpiece. It was confirmed that the elastic recovery of the workpiece influenced these changes the most. The initial dies considering these factors could avoid deviation from the designated dimension, and the desired drawn products were obtained by using the designed initial drawing dies.

A Study on the Surface Roughness Influenced by SM45C Hardness in High Frequency Induction Hardening (고주파열처리에 의한 SM45C 경도가 가공 표면 품위에 미치는 영향에 관한 연구)

  • Kim, W.I.;Heo, S.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 1993
  • In this paper, the surface roughness influenced by Sm45C hardness in high frequency induction hardening and mechanical characteristics for the changed Hv 598 part and the unchanged hardness Hv 223 part by use of cermet and ceramic cutting tools was experimentally examined. Finally, we could be had some important results by processing surface roughness on cutting conditions such as cutting speed, feed rate, depth of cut and changes of tool nose radius. The results are summarized as follows. 1. In case of the same cutting condition, the hardness of workpiece was high and acquired the best processing surface roughness when the radius of the tool nose had 0.8 mm and feed rate was 0.04 mm/rev. 2. In case of the hardness of workpiece, though the cutting speed didn't have an effect on processing surface roughness, the less feed rate and the more processing surface roughness improved. On the other hand, the low inside the hardness of workpiece, the more cutting speed and the more feed rate increase, the processing surface of roughness improved. 3. Regardless of the hardness of workpiece, the change of the cutting depth didn't have great effect on the surface roughness. 4. On cutting the high surface hardness part with cutting tools of cermet and ceramic, it can be acquired the higher processing surface roughness because it hadn't been taken effect on cutting speed, In case of the cutting process of the low inside hardness part the two cutting tools have acquired the similar processing surface roughness.

  • PDF