• Title/Summary/Keyword: Working fluid ratio

Search Result 176, Processing Time 0.028 seconds

Effects of Working Fluid Filling Ratio and Heat flux on Correlations of Heat Transfer Coefficient in Loop Thermosyphon (루프 써모사이폰에서 작동유체 충액률과 열유속이 열전달계수의 상관식에 미치는 영향)

  • 장기창;이기우;이영수;유성연
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.6
    • /
    • pp.462-473
    • /
    • 2001
  • Due to the coupling between momentum and energy transport theoretical analysis of the loop performance is very complicate, therefore it is necessary that these problems be solved by experimental investigation before applying th loop thermosyphon to heat exchanger design. The evaporator and condenser of the loop thermosyphon were made of carbon-steel, and distilled water was used as working fluid in the experiments. From the experimental data correlations of heat transfer coefficient for evaporator and condenser sections were obtained. For heat fluxes in th range of 13~78kW/$m^2$, the correlation equations of heat transfer coefficients in evaporator and condenser predict the experimental behavior to within $\p$\pm$5% and\;\pm20$% respectively.

  • PDF

The Study on Pressure Oscillation and Heat Transfer Characteristics of Oscillating Capillary Tube Heat Pipe

  • Kim, Jong-Soo;Bui, Ngoc-Hung;Jung, Hyun-Seok;Lee, Wook-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1533-1542
    • /
    • 2003
  • In the present study, the characteristics of pressure oscillation and heat transfer performance in an oscillating capillary tube heat pipe were experimentally investigated with respect to the heat flux, the charging ratio of working fluid, and the inclination angle to the horizontal orientation. The experimental results showed that the frequency of pressure oscillation was between 0.1 Hz and 1.5 Hz at the charging ratio of 40 vol.%. The saturation pressure of working fluid in the oscillating capillary tube heat pipe increased as the heat flux was increased. Also, as the charging ratio of working fluid was increased, the amplitude of pressure oscillation increased. When the pressure waves were symmetric sinusoidal waves at the charging ratios of 40 vol.% and 60 vol.%, the heat transfer performance was improved. At the charging ratios of 20 vol.% and 80 vol.%, the waveforms of pressure oscillation were more complicated, and the heat transfer performance reduced. At the charging ratio of 40. vol.%, the heat transfer performance of the OCHP was at the best when the inclination angle was 90$^{\circ}$ the pressure wave was a sinusoidal waveform, the pressure difference was at the least, the oscillation amplitude was at the least, and the frequency of pressure oscillation was the highest.

Performance Prediction of a Gas Turbine Using CO2 as Working Fluid (CO2를 작동유체로 하는 가스터빈의 성능예측)

  • Yang, Hyun-Jun;Kang, Do-Won;Lee, Jong-Jun;Kim, Tong-Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.2
    • /
    • pp.41-46
    • /
    • 2011
  • This study investigated the changes in performance and operating characteristics of an F-class gas turbine according to the change of working fluid from air to carbon dioxide. The revised gas turbine is the topping cycle of the semi-closed oxy-fuel combustion combined cycle. With the same turbine inlet temperature, the $CO_2$ gas turbine is expected to produce about 85% more power. The main contributor is the greater compressor mass flow and the added oxygen flow for the combustion. Compressor pressure ratio increases about 50%. However, the gas turbine efficiency reduces about 10 %. Modulation of inlet guide vane to reduce the compressor inlet mass flow, the major purpose of which is to reduce the compressor inlet Mach number, was also performed.

The Effect of Working Fluid Charge on the Performance of a Heat Pipe for Medium-temperature Solar Thermal Storage System (중온 태양열 축열조용 히트파이프의 작동액체 충전량이 열성능에 미치는 영향)

  • Min, Kyu-Park;Joon, Hong-Boo
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.68-73
    • /
    • 2011
  • An experimental study was conducted to investigate the thermal performance of a medium-temperature heat pipe against the charge amount of working fluid. The container and the wick of the heat pipe were made of stainless steel and the working fluid was Dowtherm-A for medium-temperature applications around $250^{\circ}C$. The diameter and length of the heat pipe were 25.4 mm and 1 m, respectively. The maximum thermal load was 1 kW and the working fluid charge ratio varied from 372% to 420%. The results showed that the thermal resistance ranged from 0.12 to $250^{\circ}C/W$ and the effective thermal conductance ranged from 7,703 to $8,898 W/m{\cdot}K$. Dry-out occurred for the heat pipe with 372% fill-charge at the heat load of 950 W, while the other heat pipes with higher charge amount did not encounter dry-out up to 1060 W.

  • PDF

A Study on Heat Transfer Performance with the Changes of Working Fluid Filling Ratio for Thermosyphon with Internal Groove (내부 그루브를 가진 열사이폰의 작동유체 봉입량 변화에 따른 열전달 성능에 관한 연구)

  • Ye, S.S.;Han, K.I.
    • Journal of Power System Engineering
    • /
    • v.4 no.3
    • /
    • pp.19-24
    • /
    • 2000
  • This study concerns the performance of the heat transfer of the thermosyphon having 80 internal groove in which boiling and condensation occur. Distilled water has been used as a working fluid. The liquid filling as the ratio of working fluid volume to total volume of thermosyphon has been used as the experimental parameters. The heat flux and heat transfer coefficient at the condenser are estimated from the experimental results. The experimental results have been assessed and compared with the existing theories. As a result of the experimental investigation, the maximum heat flow rate in the thermosyphon is proved to be dependent upon the liquid fill quantity. relatively high rates of heat transfer have been achieved operating in the thermosyphon with the internal groove. Also, a thermosyphon with the internal groove can be used to achieve some inexpensive and compact heat exchangers in low temperature. In addition, overall heat transfer coefficients and the characteristics as an operating temperature are obtained for the practical applications.

  • PDF

Numerical Analysis of Pulsating Heat Pipe Based on Separated Flow Model

  • Kim Jong-Soo;Im Yong-Bin;Bui Ngoc Hung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1790-1800
    • /
    • 2005
  • The examination on the operating mechanism of a pulsating heat pipe (PHP) using visualization revealed that the working fluid in the PHP oscillated to the axial direction by the contraction and expansion of vapor plugs. This contraction and expansion is due to the formation and extinction of bubbles in the evaporating and condensing section, respectively. In this paper, a theoretical model of PHP was presented. The theoretical model was based on the separated flow model with two liquid slugs and three vapor plugs. The results show that the diameter, surface tension and charge ratio of working fluid have significant effects on the performance of the PHP. The following conclusions were obtained. The periodic oscillations of liquid slugs and vapor plugs were obtained under specified parameters. When the hydraulic diameter of the PHP was increased to d=3mm, the frequency of oscillation decreased. By increasing the charging ratio from 40 to 60 by volume ratio, the pressure difference between the evaporating section and condensing section increased, the amplitude of oscillation reduced, and the oscillation frequency decreased. The working fluid with higher surface tension resulted in an increase in the amplitude and frequency of oscillation. Also the average temperature of vapor plugs decreased.

Performance Characteristics of a Loop Thermosyphon for Heat Source Cooling (열원 냉각용 루프 써모사이폰의 작동 특성)

  • Choi, Du-Sung;Song, Tae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1475-1483
    • /
    • 2004
  • Loop thermosyphon(LTS) has many good characteristics such as low thermal resistance, no power consumption, noiseless operation and small size. To investigate the overall performance of LTS, we have performed various experiments varying three parameters: input power of the heater, working fluid(water, ethanol, FC3283) and filling ratio of the working fluid. At a combination of these parameters, temperature measurements are made at many locations of the LTS. The temperature difference between the evaporator and the condenser is used to obtain the thermal resistance. In addition, flow visualization using a high speed camera is carried out. The thermal resistance is not constant. It is lower at higher input power, which is one of the distinct merits of LTS. Flow instabilities are frequently observed when changing the working fluid, the input power and the filling ratio. The results show that the LTS can be readily put into practical use. Future practical application in electronic cooling is recommended.

A Study on Thermal Performance of Cooling System for a Laptop Computer Using a Cold Plate (Cold plate를 이용한 휴대용 컴퓨터 냉각 시스템의 열성능에 관한 연구)

  • Park, Sang-Hee;Cho, Nam-Hea;Choi, Sung-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.83-89
    • /
    • 2009
  • This study investigates two-phase cooling system of close-loop by using FC-72 and PCM(Phase change material). The cooling system consists of evaporator, cold plate, micro pump, and condenser. The heat input on the performance of evaporator is appreciated by visualizing the boiling on the evaporator. The heat performance of cooling system is investigated to determine the effects of volume fill ratio change at working fluid, pump flow rate change, and volume fill ratio change at PCM in cold plate. Experimental results show the ideal condition when the volume ratio of working fluid, the pump flowing, and the volume ratio of PCM are 60%, 6ml/min, and 60% respectively.

  • PDF

A Study on the Performance of Condensation Heat Transfer for Various Working Fluid of Two-Phase Closed Thermosyphons with Various Helical Grooves (나선 그루브형 열사이폰의 작동유체의 변화에 대한 응축열전달 성능에 관한 연구)

  • Han, K.I.;Cho, D.H.;Park, J.U.;Lee, S.J.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.239-244
    • /
    • 2003
  • This study concerns the performance of condensing heat transfer in two-phase closed thermosyphons with various helical grooves. Distilled water, methanol, ethanol have been used as the working fluid. In the present work, a copper tube of the length of 1200mm and 14.28mm of inside diameter is used as the container of the thermosyphon. Each of the evaporator and the condenser section has a length of 550mm, while the remaining part of the thermosyphon tube is adiabatic section. A experimental study was carried out for analyzing the performances of having 50, 60, 70, 80, 90 helical grooves. A plain thermosyphon having the same inner and outer diameter as the grooved thermosyphons is also tested for the comparison. The type of working fluid and the numbers of grooves of the thermosyphons with various helical grooves have been used as the experimental parameters. The experimental results have been assessed and compared with existing theories. The results show that the type of working fluids are very important factors for the operation of thermosyphons. And the maximum enhancement (i.e. the ratio of the heat transfer coefficients the helical thermosyphons to plain thermosyphons) is $1.5{\sim}2$ for condensation.

  • PDF

A Study on the Performance of Condensation Heat Transfer for Various Working Fluid of Two-Phase Closed Thermosyphons with Various Helical Grooves (나선 그루브형 열사이폰의 작동유체의 변화에 대한 응축열전달 성능에 관한 연구)

  • Han, Kyu-Il;Cho, Dong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.116-122
    • /
    • 2005
  • This study concerns the performance of condensing heat transfer in two-phase closed thermosyphons with various helical grooves. Distilled water, methanol, ethanol have been used as the working fluid. In the present work, a copper tube of the length of 1200mm and 14.28mm of inside diameter is used as the container of the thermosyphon. Each of the evaporator and the condenser section has a length of 550mm, while the remaining part of the thermosyphon tube is adiabatic section. A experimental study was carried out for analyzing the performances of having 50, 60, 70, 80, 90 helical grooves. A plain thermosyphon having the same inner and outer diameter as the grooved thermosyphons is also tested for the comparison. The type of working fluid and the numbers of grooves of the thermosyphons with various helical grooves have been used as the experimental parameters. The experimental results have been assessed and compared with existing theories. The results show that the type of working fluids are very important factors for the operation of thermosyphons. And the maximum enhancement (i.e. the ratio of the heat transfer coefficients the helical thermosyphons to plain thermosyphons) is $1.5{\sim}2$ for condensation.