• Title/Summary/Keyword: Working fluid ratio

Search Result 176, Processing Time 0.026 seconds

The Study on Pressure Oscillation and Heat Transfer Characteristics of Oscillating Capillary Tube Heat Pipe Using Mixed Working Fluid (혼합 작동 유체를 이용한 진동 세관형 히트 파이프의 압력 진동과 열전달 특성에 관한 연구)

  • Jeong, Hyeon-Seok;Kim, Jeong-Hun;Kim, Ju-Won;Kim, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.318-327
    • /
    • 2002
  • In this paper, heat transfer and pressure oscillation characteristics on oscillating capillary tube heat pipe(OCHP) according to input heat flux, mixture ratio of working fluid and inclination angle were investigated and were compared single working fluid(R-142b) with binary mixture working fluid(R-142b-Ethano1). OCHP was made to serpentine structure of loop type with 10 turns by drilling the channels of length 220mm, width 1.5mm, and depth 1.5mm on the surface of brass plate. In this study, R-l42b and R-l42b-Ethanol were used as working fluids, the charging ratio of working fluids was 40(vol.%), the input heat flux to evaporating section was changed from 0.3W/㎠ to 1.8W/㎠, and mixture ratio of working fluid was R(100%), R(95%)-E(5%), R(90%)-E(10%), and R(85%)-E(15%). From the experimental results, it was found that the effective thermal conductivity of single working fluid was better than that of binary mixture working fluid. But, in case of binary mixture working fluid, critical heat flux was higher than that of single working fluid. And, the higher the mixture ratios of working fluid, the lower heat transfer performance. In case of pressure oscillation, as the inclination angle was lower, pressure wave was more irregular. These phenomena were more serious when the working fluid was binary mixture. Besides, when mixture ratio was higher, saturated pressure was increased, more irregular wave was observed and the mean amplitude was increased. For the same input heat flux, inclination angle and charging ratio, when pressure oscillation has sinusoidal wave, mean amplitude was small, and saturated pressure was low value, the heat transfer was excellent.

A Study of various Working Fluid in the Low Temperature Heat Pipe (저온용(低溫用) 히이트파이프의 작동유체(作動流體)에 관한 연구(硏究))

  • Chang, Young-Suk;Lee, Young-Soo;Seoh, Jeong-Il
    • Solar Energy
    • /
    • v.6 no.2
    • /
    • pp.76-85
    • /
    • 1986
  • The study on the characteristics of heat transfer by various working fluid and wick structure is an important subject in order to design low temperature heat pipe. The purpose of this research was to study the heat transfer characteristics of heat pipe according to various working fluid and wick thickness by ADI method and experimental results. As the results the heat transfer by various working fluid could improve by good heat conductivity of fluid and small ratio t/k. The working fluid could be selected in close vicinity to boiling temperature among fluid properties the value of ratio little influenced heat transfer of heat pipe. In case of distilled water, the response of the effect in heat recovery was more rapidly showed than response of other working fluid. The maximum heat flux increased in proportion to the characteristics of working fluid but the pore and wick permeability among wick characteristic was little effect in the wetting state.

  • PDF

Energy Separation of Incompressible Fluid Using Vortex Tube (보텍스 튜브를 이용한 비압축성 유체의 에너지 분리)

  • Yu, Gap-Jong;Choe, Byeong-Cheol;Lee, Byeong-Hwa
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.108-116
    • /
    • 2001
  • The vortex tube is a simple device which separates fluid stream into a cold stream and a hot stream without any chemical reaction. The process of energy separation in the vortex tube has caused a great deal of interest. Although many studies on energy separation in the vortex tube using air as the working fluid have been made so far, few experimental studies treated energy separation for incompressible fluid. So, an experimental study for the energy separation in the vortex tube using the water which is essentially an incompressible fluid is presented. When working fluid is the water, the best geometric values of nozzle area ratio and number of nozzle holes are 0.155, 6 respectively. These geometric values are showed by the similar values which are presented by compressible fluid as working fluid. But hot side mass fraction of which maximum temperature drop is happened are different from compressible fluid.

Influence of Working Fluids to Heat Transfer Characteristics of Heat Exchanger using Oscillating Capillary Tube Heat Pipe for Low Temperature Waste Heat Recovery

  • Lee, Wook-Hyun;Im, Yong-Bin;Kim, Ju-Won;Kim, Jeung-Hoon;Kim, Jong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.27-35
    • /
    • 2001
  • Heat transfer characteristics of a heat exchanged for low temperature waste heat recovery using oscillating capillary tube heat pipe (OCHP) were evaluated against the charging ratio variation of working fluid and various working fluids. R-l42b, R-22 and R-290 were used as working a 2.6mm in outside diameter, 1.44mm in inside diameter with 101m length and 140 turns. Charging ratio of working fluid was 40% and 50%. water was used as secondary fluid. Inlet temperature and mass velocity for each secondary fluid were 297 K, 280 K and 9~27 $4kg/m^2s$, respectively. From experimental results, it was found that heat transfer performance of R-22 was higher than those of R-142b and R-290 and it was proportional to Figure of Merit for thermosyphon. As a result, it was thought that R-22 was the most reasonable working fluid of waste heat recovery for low temperature waste heat recovery.

  • PDF

Influence of Working Fluids to Heat Transfer Characteristics of the Heat Exchanger using Oscillating Capillary Tube Heat Pipe for Low Temperature Waste Heat Recovery (저온 폐열회수용 진동세관형 히트파이프 열교환기의 작동 유체에 따른 열전달 특성)

  • 이욱현;임용빈;김정훈;김종수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.7
    • /
    • pp.659-666
    • /
    • 2000
  • Heat transfer characteristics of a heat exchanger for low temperature waste heat recovery using oscillating capillary tube heat pipe were evaluated against the charge ratio variation of working fluid and various working fluids. R-l42b, R-22 and R-290 were used as working fluids. The heat exchanger was composed of heat pipe with capillary tube bundles, having a 2.6mm in outer diameter, 1.4mm in inner diameter with 101m long, and 40 turns. Charge ratio of working fluid was 40% and 50%. Water was used as secondary fluid. Inlet temperature and mass velocity for each secondary fluid were 297 K, 280 K and9~27 kg /$m^2s$,, respectively. From experimental results, it was found that heat transfer performance of R-22 was higher than those of R-l42b and R-290 and it was proportional to Figure of merit for thermosyphons. As a result, it was thought that R-22 was the most suitable working fluid of waste heat recovery for low temperature waste heat recovery.

  • PDF

Comparative Thermodynamic Analysis of Organic Rankine Cycle and Ammonia-Water Rankine Cycle (유기랭킨사이클과 암모니아-물 랭킨사이클의 열역학적 성능의 비교 해석)

  • KIM, KYOUNG HOON;KIM, MAN-HOE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.5
    • /
    • pp.597-603
    • /
    • 2016
  • In this paper a comparative thermodynamics analysis is carried out for organic Rankine cycle (ORC) and ammonia-water Rankine cycle (AWRC) utilizing low-grade heat sources. Effects of the working fluid, ammonia concentration, and turbine inlet pressure are systematically investigated on the system performance such as mass flow rate, pressure ratio, turbine-exit volume flow, and net power production as well as the thermal efficiency. Results show that ORC with a proper working fluid shows higher thermal efficiency than AWRC, however, AWRC shows lower mass flow rate of working fluid and lower pressure ratio of expander than ORC.

ANALYSIS OF HEAT TRANSFER PERFORMANCE WITH ASPECT AND FILLING RATIOS IN THERMOSYPHON (열사이펀의 형상비와 충전율에 따른 열전달 성능 해석)

  • Kim, Y.C.;Choi, J.W.;Kim, S.C.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.92-98
    • /
    • 2015
  • Thermal-fluid analysis is performed numerically to figure out the characteristics of heat transfer in a thermosyphon varying with the aspect ratio of geometry and the filling ratio of working fluid. The computational results are reasonable compared with the experimental data and visualized. The thermal resistance and the convective heat transfer coefficients are evaluated with the aspect ratio of thermosyphon and the filling ratio of working fluid, respectively. In conclusion, the thermal resistance decreases as the length of evaporator increases. However, the variation of a condenser length is nearly independent on the thermal resistance. In order to raise the performance of thermosyphon, the working fluid needs to be filled over 75%. In addition, Nusselt numbers in the evaporator and the condenser show 275 and 304, respectively.

A Study on the Characteristics of Condensation Heat Transfer of Two-Phase Loop Thermosyphons (루우프형 2상 유동 열사이폰의 응축열전달 특성에 관한 연구)

  • Park, Jong-Un;Cho, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.4
    • /
    • pp.894-901
    • /
    • 2014
  • This study concerns the performance of condensation heat transfer in two-phase loop thermosyphons. In the present work, R134a has been used as the working fluid. Liquid fill charge ratio defined by the ratio of working fluid volume to total internal volume of thermosyphon, heat flux and wind speed of condensation have been used as the experimental parameters. The results show that the filling rate of working fluid and heat flux are very important factors for the operation of two-phase loop thermosyphons. The optimum liquid fill charge ratio for the best condensation heat transfer rate was 80%.

Thermal characteristics of Nanofluidic Heatpipe Hot Chuck (나노유체를 이용한 히트파이프 핫척의 열적 특성)

  • Lim, Taek-Kyu;Rhi, Seok-Ho;Kim, Dae-Hyun;Lee, Chung-Gu
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2110-2115
    • /
    • 2008
  • In this study, We disigned and manufactured the Hot Chuck which can be operated until $120^{\circ}C$. Its shape is circular, wide is 300mm and depth is 15mm. Two types working fluid was used as working fluid(distilled water, 0.1%-$TiO_2$ nanofluid). The experimental results were compared to each working fluid. The effect of various working fluid, charging volume ratio was investigated. Also we investigated heat transfer rate against each working fluid. By using nanofluid, heat transfer rate can be enhanced and the wick structure can be constructed automatically on smooth surface. The experiment of 40% charged 0.1%-$TiO_2$ nanofluid showed the best performance of thermal accuracy and uniformity. To improve performance of Hot Chuck, more study is needed.

  • PDF

Performance Analysis of Ejector-Pump Thermal Energy Conversion System Using Various Working Fluids (이젝터-펌프 온도차발전시스템의 작동유체별 성능분석)

  • Yoon, Jung-In;Seol, Sung-Hoon;Son, Chang-Hyo;Choi, Kwang-Hwan;Kim, Young-Bok;Lee, Ho-Saeng;Kim, Hyeon-Ju;Moon, Jung-Hyun
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.87-92
    • /
    • 2016
  • This research dealt with performance characteristics of OTEC system applying an ejector and additional pump. Each system using five kinds of working fluids was analyzed, and primary parameters with respect to entrainment ratio were examined: Turbine gross power, evaporation capacity, pump work, efficiency and volume flow ratio. The primary results were as following. The efficiency of ejector-pump OTEC system was dependent on entrainment of the ejector. The degree of efficiency change was different from applied working fluid, and amount of pump work was turned out to be primary factor affected system efficiency. Meanwhile, optimized entrainment ratio was different from applied working fluid since their different vapor density. System efficiency at optimized entrainmet ratio of each working fluid was around 5%, showing minor difference each other.