• Title/Summary/Keyword: Working Power

Search Result 1,786, Processing Time 0.033 seconds

Experimental and numerical study on mechanical behavior of RC shear walls with precast steel-concrete composite module in nuclear power plant

  • Haitao Xu;Jinbin Xu;Zhanfa Dong;Zhixin Ding;Mingxin Bai;Xiaodong Du;Dayang Wang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2352-2366
    • /
    • 2024
  • Reinforced concrete (RC) shear walls with precast steel-concrete composite modular (PSCCM) are strongly recommended in the structural design of nuclear power plants due to the need for a large number of process pipeline crossings and industrial construction. However, the effect of the PSCCM on the mechanical behavior of the whole RC shear wall is still unknown and has received little attention. In this study, three 1:3 scaled specimens, one traditional shear wall specimen (TW) and two shear wall specimens with the PSCCM (PW1, PW2), were designed and investigated under cyclic loadings. The failure mode, hysteretic curve, energy dissipation, stiffness and strength degradations were then comparatively investigated to reveal the effect of the PSCCM. Furthermore, numerical models of the RC shear wall with different PSCCM distributions were analyzed. The results show that the shear wall with the PSCCM has comparable mechanical properties with the traditional shear wall, which can be further improved by adding reinforced concrete constraints on both sides of the shear wall. The accumulated energy dissipation of the PW2 is higher than that of the TW and PW1 by 98.7 % and 60.0 %. The failure of the shear wall with the PSCCM is mainly concentrated in the reinforced concrete wall below the PSCCM, while the PSCCM maintains an elastic working state as a whole. Shear walls with the PSCCM arranged in the high stress zone will have a higher load-bearing capacity and lateral stiffness, but will suffer a higher risk of failure. The PSCCM in the low stress zone is always in an elastic working state.

Magnetic Wireless Actuator for Medical Applications

  • Kazushi, Ishiyama;Masahiko, Sendoh;Aya, Yanmazaki;Ken, Ichi Arai
    • Journal of Magnetics
    • /
    • v.8 no.1
    • /
    • pp.74-78
    • /
    • 2003
  • The largest advantage of magnetic micromachine is wireless operation. This advantage makes it suitable for medical micromachine working inside the human body. In the medical field, low invasion treatment is very important From this point of view, very small machines working in the body without power supply cables meet the needs of the medical field. In this paper, we report about magnetic wireless actuators for medical applications.

Development of Low Power PLC Modem for Monitoring of Power Consumption and Breaking of Abnormal Power (전력감시 및 이상전력 차단 기능을 갖는 저전력 전력선통신 모뎀 개발)

  • Yoon, Jae-Shik;Wee, Jung-Chul;Park, Chung-Ha;Song, Yong-Jae;Kim, Jae-Heon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2281-2285
    • /
    • 2009
  • Powerline communication is the data signal which is modulated by carrier frequency through the installed powerline at in-home or office is transmitted and received signals are separated into data signal with using band-pass filter which cent-frequency is carrier frequency. The home gateway, an equipment which works as an gateway for ubiquitous home network, relays all functions of a home network. The home gateway must always be connected in order to provide seamless services. However it gives unfavorable power consumption. Therefore the needs for working in maximum power saving mode while there is no data traffic and for invoking to the normal function when it is necessary. So, in this paper we survey the development of low power PLC modem monitoring of power consumption and breaking abnormal power in the home Network.

A Study on the Cutting Optimal Power Requirements of Fast Growing Trees by Circular Saw (원형톱에 의한 속성수 절단 적정 소요동력 산정에 관한 연구)

  • Choi, Yun Sung;Kim, Dae Hyun;Oh, Jae Heun
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.3
    • /
    • pp.402-407
    • /
    • 2014
  • In this study, Italy poplar(Populus euramericana) was selected for test specimen to measure cutting power when it harvested. The experiment has been controlled as three levels of feed rate (0.41, 1.25 and 2.5 m/s), sawing speed (800, 1,000 and 1,200 rpm), and the five levels of root collar diameter (50, 70, 90 and 110, 130 mm). The harvested volume after 3 years (root collar diameter 50 mm) was 10.5 tons, which falls short of the target amount of biomass is 20~30 ton/ha. In addition, the biomass amount of diameter 90 and 110 mm which reached the target amount were estimated to be 23.5 and 32.5 ton/ha respectively. As a result of experiment, it was found out that power of 128.2 and 175.8 W are consumed in case of cutting with the feed rate of 0.41m/s and minimum sawing speed (800 rpm) respectively. With the working area of 0.3 ha/h, it is considered to present working capacities of 16.5 and 22.8 ton/h respectively. The power consumed at the feed rate of 1.25 m/s is estimated to be 113.8 and 153.7W respectively and working capacity in a working area of 1 ha/h is estimated to be 23.5 and 32.5 ton/h. The power consumed at the feed rate of 2.5 m/s is estimated to be 119.8 and 166.9 W respectively and working capacity in a working area of 2 ha/h is estimated to be 47.0 and 65.5 ton/ha respectively. Therefore, the power source of harvest machine at the feed rate of 1.25, 2.50 m/s and sawing speed of 800 rpm shall be selected as it can process the target amount of estimated biomass.

Fabrication of High Break-down Voltage MIM Capacitors for IPD Applications

  • Wang, Cong;Kim, Nam-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.241-241
    • /
    • 2009
  • For the Radio Frequency Integrated Passive Device (RFIPD) application, we have successfully developed and characterized high break-down voltage metal-insulator-metal (MIM) capacitors with 2,000 ${\AA}$ plasma-enhanced chemical vapor deposition (PECVD) silicon nitride which deposited with $SiH_4/NH_3$ gas mixing rate, working pressure, and RF power of PECVD at $250^{\circ}C$ chamber temperature. At the PECVD process condition of gas mixing rate (0.957), working pressure (0.9 Torr), and RF power (60 W), the AFM RMS value of about 2,000 ${\AA}$ silicon nitride on the bottom metal was the lowest of 0.862 nm and break-down electric field was the highest of about 8.0 MV/cm with the capacitance density of 326.5 $pF/mm^2$.

  • PDF

Dynamic Model for Ocean Thermal Energy Conversion Plant with Working Fluid of Binary Mixtures

  • Nakamura, Masatoshi;Zhang, Yong;Bai, Ou;Ikegami, Yasuyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2304-2308
    • /
    • 2003
  • Ocean thermal energy conversion (OTEC) is an effective method of power generation, which has a small impact on the environment and can be utilized semi-permanently. This paper describes a dynamic model for a pilot OTEC plant built by the Institute of Ocean Energy, Saga University, Japan. This plant is based on Uehara cycle, in which binary mixtures of ammonia and water is used as the working fluid. Some simulation results attained by this model and the analysis of the results are presented. The developed computer simulation can be used to actual practice effectively, such as stable control in a steady operation, optimal determination of the plant specifications for a higher thermal efficiency and evaluation of the economic prospects and off-line training for the operators of OTEC plant.

  • PDF

Study on the Working Characteristics of Vaporizer for Super Low Temperature Liquefied Gas (초저온 액화천연가스용 기화기의 운전특성에 관한 연구)

  • Kong, T.W.;Yi, S.B.;Lee, S.C.;Chung, H.S.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.99-105
    • /
    • 2005
  • LNG Vaporizers must be smaller, more efficient, and easier to operate and maintain. Recently, the vaporizers with greatly enhanced performance as compared to conventional type, have been developed to fulfill these requirements. The vaporizing characteristic of LNG vaporizer with air as heat source has fixed ice. These characteristic has efficient down and total plant cost and installing space can be increase. On that reasons must be optimize through tube and pipes analysis and experiments with enhanced type in this study. In this study performance to the workong characteristics for air heating type vaporizer for super low temperature liquefied gas.

  • PDF

Design of High Frequency Inverter with Series-parallel Load-Resonant for Induction Heating application (유도가열기용 직.병렬 공진 고주파 인버터의 설계)

  • 홍순일;손의식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.6
    • /
    • pp.12-17
    • /
    • 2000
  • IN induction heating system the high frequency operation allows a rapid response to current fluctuation in the inverter and result in improved welding quality. To work induction heating of nonferrous metals, a welding power supply is need high working frequency and high power. This paper is shown design technique for increasing working frequency in induction heating for welding coppers. A series-parallel resonate inverter consists of H-type bridges, each of whose arms is composed of a combination of two parallel IGBTs. Inverter operating with the fixed frequency is controlled by pulse width modulation (PWM). As switching adapted the Zero-Voltage Switching technique to reduce switching losses the system is high efficiency. The propose inverter has feature which is high efficiency for very wide load variations with a narrow range of duty cycle ratio control and load short circuit capability. Detailed experimental results obtained from a 48[V] output, 500[W] experimental inverter are presented to verify the concept.

  • PDF

Deposition and Optimization of Al-doped ZnO Thin Films Fabricated by In-line Sputtering System (인라인 스퍼터를 이용한 알루미늄 도핑된 산화아연 박막의 증착 및 특성 최적화 연구)

  • Kang, Dong-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1236-1241
    • /
    • 2017
  • We deposited Al-doped ZnO (ZnO:Al) thin films on glass substrates ($200mm{\times}200mm$) by using in-line magnetron sputtering system. Effects of various deposition parameters such as working pressure, deposition power and substrate temperature on optoelectronic characteristics including surface-texture etching profiles were carefully investigated in this study. We found that relatively low working pressure and high deposition power offered to obtain enhanced conductivity and optical transmittance. Haze properties showed similar trend with the transmittance. Furthermore, surface-texture etching study exhibited good morphologies when the films were deposited at $200-300^{\circ}C$. On the basis of these optimizations, we could find the deposition region that produces highly transparent and conductive properties including efficient light scattering capability.

Development of high-voltage rectangu1ar waveform generator operating in low-frequency domain (저주파용 고전압 구형파 발생장치의 개발)

  • Lee, Bok-Hee;Choi, Won-Gyu;Chang, Sug-Hun
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.959-961
    • /
    • 1998
  • In this paper, we present design rule of high-voltage rectangular generator working in wide band frequency domain. Though power electronics now have voltage ratings up to several kV, it is difficult to design and fabricate high-voltage systems with the power electronic devices alone. So we have combined IGBT with technically designed transformer to get the high-voltage rectangular waveforms. In this work, next two things are the main factors. The first one is design of transformer working low-frequency domain of less than 10Hz. And the second one is adding offset voltage part. As a result, we can get variable frequency high-voltage rectangular waveform and this can be used as a voltage source of sandpaper manufacturing process.

  • PDF