• Title/Summary/Keyword: Work speed

Search Result 1,893, Processing Time 0.025 seconds

볼엔드밀 절삭공정의 절삭력 디지털 제어

  • 이천환;이건복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.198-203
    • /
    • 1992
  • There are two important variables in machining process control, which are feed and cutting speed. It is possible to improve the machining accuracy and the productivity by maintaining the optimal feed and cutting speed. IN this work, a controller is designed to achieve on-line cutting force control based on the modeling of cutting process dynamics established through step response test. Two schemes are proposed and implemented. The first is feed control under the constant spindle speed and the second is spindle speed control under the constant feed. Finally, both are proved to work properly through simulation and experimentation.

A Study on Cargo Picking Safety Work: Focusing on Rack Work Place (보관작업장 사고방지 예방에 관한 연구: 렉 작업장을 중심으로)

  • Chung, Byung Hyun;Kim, Ki Hong
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.3
    • /
    • pp.23-28
    • /
    • 2022
  • Rack is a place to store products. Workers pick products from rack storage. After picking up, workers move to another location by forklift. Driving speed, worker condition, and number/frequency of operation is responsible for forklift accidents. When an accident occurs, products get damaged. Therefore, it is important to prevent one. As the research result, To prevent forklift accidents, the minimum order quantity, the minimum number of operations, and low speed operation are required.

Optimum Bar-feeder Support Positions of a Miniature High Speed Spindle System by Genetic Algorithm (유전 알고리듬을 이용한 소형 고속스핀들 시스템의 바-피더 지지부의 위치 최적선정)

  • Lee, Jae-Hoon;Kim, Mu-Su;Park, Seong-Hun;Kang, Jae-Keun;Lee, Shi-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.99-107
    • /
    • 2009
  • Since a long work piece influences the natural frequency of the entire system with a miniature high speed spindle, a bar-feeder is used for a long work piece to improve the vibration characteristics of a spindle system. Therefore, it is very important to design optimally support positions between a bar-feeder and a long work piece for a miniature high speed spindle system. The goal of the current paper is to present an optimization method for the design of support positions between a bar-feeder and a long work piece. This optimization method is effectively composed of the method of design of experiment (DOE), the artificial neural network (ANN) and the genetic algorithm (GA). First, finite element models which include a high speed spindle, a long work piece and the support conditions of a bar-feeder were generated from the orthogonal array of the DOE method, and then the results of natural vibration analysis using FEM were provided for the learning inputs of the neural network. Finally, the design of bar-feeder support positions was optimized by the genetic algorithm method using the neural network approximations.

A Study on the Structural Safety of Tower Crane Telescoping Work according to Wind Speed and Load (타워크레인 텔레스코핑 작업의 풍속 및 하중에 대한 구조 안전성 연구)

  • Jung, Sung-Lyoung;Lee, Do-Geun;Paik, Shinwon;Shin, Sang-Yeon
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • This study analyses the load imbalance of the tower crane used in telescoping work for structural safety, owing to the difference in wind speed and balance weight position. This is because wind speed and position of the balance weight have a significant impact on the structural stresses of a tower crane during telescoping work. Therefore, structural analysis was performed on the 290HC model, which is often used at construction sites and has only one cylinder installed. Moreover, two models were classified to determine the load acting on the connecting part of the telescopic cage to slewing platform and the cylinder. Five types of balance weight positions were applied at regular intervals from jibs; moreover, four types of wind load criteria were differently applied. Hence, the telescopic cage columns were destroyed at all balance weight positions at a wind speed of 30 m/s and only at certain locations at a wind speed of 20 m/s. Furthermore, failures occurred for cylinders, torsional, and bending at wind speeds of 30 m/s and 20 m/s, load imbalances above the allowable thresholds considering the safety factor. In addition, the load imbalance in the telescoping work also varied depending on the position of the balance weights. The results of these studies have validated that the current standards of adjusting the appropriate position of the balance weights on the jib are completely valid, with the telescoping work to be executed only at wind speeds of less than equal to 10 m/s.

Simultaneous Control of Cutting Force and Position Using Two Degree-of- Freedom Controller in CNC Ball-end Milling Process (2자유도 제어기를 이용한 CNC볼엔드밀링 공정에서 절삭력과 위치의 동시제어)

  • 양호석;심영복;이건복
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.536-542
    • /
    • 2002
  • There are two important variables in machining process control, which are feed and cutting speed. In this work, a two degree-of-freedom controller is designed and implemented to achieve on-line cutting force control and position control based on the modelling of cutting process dynamics which are established through step response test. Two schemes are proposed and implemented. The first is feed control under the constant spindle speed and spindle speed control under the constant feed speed. The second is a simultaneous control of feed and spindle speed. The last performs a position control under the constant cutting force. Those are confirmed to work properly. Especially the latter shows a faster response.

  • PDF

Cutting Force Control Using A Two Degree-of-Freedom Controller in Ball-end Milling Processes (CNC 볼엔드밀링 공정에서 2자유도 제어기를 이용한 절삭력 제어)

  • 양호석;심영복;이건복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.219-224
    • /
    • 2002
  • There are two important variables in machining process control, which are feed and cutting speed. In this work, a two degree-of-freedom controller is designed and implemented to achieve on-line cutting force control based on the modelling of cutting process dynamics which are established through step response test. Two schemes are proposed and implemented. The first is feed control under the constant spindle speed and spindle speed control under the constant fled speed. The second is a simultaneous control of feed and spindle speed. Those are confirmed to work properly. Especially the latter shows a faster response and we'll be evaluated to pare away workpiece by simultaneous control of position and cutting farce sooner or later.

  • PDF

Effects of the Grinding Conditions on the Shape of Center Ground Parts

  • Kim, Kang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.3
    • /
    • pp.55-61
    • /
    • 2003
  • The form accuracy of parts has become an important parameter. Therefore, not only dimensional tolerance but also geometric tolerances are used in the design stage to satisfy the required quality and functions of parts. But the information on the machining conditions, which can satisfy the assigned geometric tolerance in do sign, is insufficient. The objectives of this research are to study the effects of the grinding parameters such as traverse speed, work speed, depth of cut, and dwell time on the after-ground workpiece shape, and to find out the major parameters among them The results are as follows; The effects of work speed and depth of cut on the workpiece shape are negligible compared with the effect of traverse speed. These is an optimal dwell time depending on the traverse speed. The optimal dwell time is decreasing as the traverse speed is increasing.

Study on low-k wafer engraving processes by using UV pico-second laser (Low-k 웨이퍼 레이저 인그레이빙 특성에 관한 연구)

  • Nam, Gi-Jung;Moon, Seong-Wook;Hong, Yoon-Seok;Bae, Han-Seong;Kwak, No-Heung
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.11a
    • /
    • pp.128-132
    • /
    • 2006
  • Low-k wafer engraving process has been investigated by using UV pico-second laser with high repetition rate. Wavelength and repetition rate of laser used in this study are 355nm and 80MHz, respectively. Main parameters of low-k wafer engraving processes are laser power, work speed, assist gas flow rate, and protective coating to eliminate debris. Results show that engraving qualities of low-k layer by using UV pico-second pulse width and high repetition rate had better kerf edge and higher work speed, compared to one by conventional laser with nano-second pulse width and low repetition rate in the range of kHz. Assist gas and protective coating to eliminate debris gave effects on the quality of engraving edge. Total engraving width and depth are obtained less than $20{\mu}m$ and $10{\mu}m$ at more than 500mm/sec work speed, respectively. We believe that engraving method by using UV pico-second laser with high repetition rate is useful one to give high work speed of laser material process.

  • PDF

A Study of Low-k Wafer Engraving Processes by Using Laser with Pico-second Pulse Width (자외선 피코초 레이저를 이용한 Low-k 웨이퍼 인그레이빙 특성에 관한 연구)

  • Moon, Seong-Wook;Bae, Han-Seong;Hong, Yun-Suk;Nam, Gi-Jung;Kwak, No-Heung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.11-15
    • /
    • 2007
  • Low-k wafer engraving process has been investigated by using UV pico-second laser with high repetition rate. Wavelength and repetition rate of laser used in this study are 355 nm and 80 MHz, respectively. Main parameters of low-k wafer engraving processes are laser power, work speed, assist gas flow, and protective coating to eliminate debris. Results show that engraving qualities of low-k layer by using a laser with UV pico-second pulse width and high repetition rate had better kerf edge and higher work speed, compared to one by conventional laser with nano-second pulse width and low repletion rate in the range of kHz. Assist gas and protective coating to eliminate debris gave effects on the quality of engraving edge. Total engraving width and depth are obtained less than $20\;{\mu}m$ and $10\;{\mu}m$ at more than 500 mm/sec work speed, respectively. We believe that engraving method by using UV pico-second laser with high repetition rate is useful one to give high work speed in laser material process.

  • PDF

A Study on the 3-D Form Characteristics of Center Ground Parts (원통연삭 가공물의 3차원 형상특성에 관한 연구)

  • Cho, Jaeil;Kim, Kang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.95-99
    • /
    • 1996
  • The form accuracy of parts has become an important parameter. Therefore dimensional tolerance and geometric tolerance are used in design to satisfy required quility and functions of parts. But the informations for machining conditions, which can satisfy the assigned geometric tolerance in design, are insufficient. The objectives of this research are to study the effects of the grinding parameters such as traverse speed, work speed, depth of cut, and dwell time on the after-ground workpiece shape, and to find out the major parameters among these parameters. Finally, a methodology is proposed for getting the optimal grinding condition for precision workpiece The results are as follows; The effects of work speed and depth of cut on workpiece shape are ignorable compared to the effect of traverse speed. These is the optimal dwell time depending on the traverse speed. The optimal dwell time is decreasing when the traverse speed is increased.

  • PDF