• Title/Summary/Keyword: Work of Fracture

Search Result 443, Processing Time 0.027 seconds

Effect of Hydrostatic Pressure on the Elastic Work Factor of Graphite/Epoxy Composites (정수압이 탄소섬유/에폭시 복합재의 탄성일인자에 미치는 영향)

  • 이지훈;김만태;신명근;한운용;이경엽
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1390-1393
    • /
    • 2003
  • Work factor approach is conveniently used in metal fracture mechanics to determine fracture toughness from a single fracture test. In this work, we investigated the applicability of the work factor approach in order to determine fracture toughness of thick graphite/epoxy composites in the hydrostatic pressure environment from a single fracture test. The effect of hydrostatic pressure on the elastic work factor was studied, The stacking sequence used was multi-directional, [0$^{\circ}$/${\pm}$45$^{\circ}$/90$^{\circ}$]. The hydrostatic pressures applied were 0.1 MPa, 100 MPa, 200 MPa, and 300 MPa. The results showed that the elastic work factor was not affected by the hydrostatic pressure, The elastic work factor decreased in a linear fashion with crack length.

  • PDF

Effect of medium coarse aggregate on fracture properties of ultra high strength concrete

  • Karthick, B.;Muthuraj, M.P.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.103-114
    • /
    • 2021
  • Ultra high strength concrete (UHSC) originally proposed by Richards and Cheyrezy (1995) composed of cement, silica fume, quartz sand, quartz powder, steel fibers, superplasticizer etc. Later, other ingredients such as fly ash, GGBS, metakaoline, copper slag, fine aggregate of different sizes have been added to original UHSC. In the present investigation, the combined effect of coarse aggregate (6mm - 10mm) and steel fibers (0.50%, 1.0% and 1.5%) has been studied on UHSC mixes to evaluate mechanical and fracture properties. Compressive strength, split tensile strength and modulus of elasticity were determined for the three UHSC mixes. Size dependent fracture energy was evaluated by using RILEM work of fracture and size independent fracture energy was evaluated by using (i) RILEM work of fracture with tail correction to load - deflection plot (ii) boundary effect method. The constitutive relationship between the residual stress carrying capacity (σ) and the corresponding crack opening (w) has been constructed in an inverse manner based on the concept of a non-linear hinge from the load-crack mouth opening plots of notched three-point bend beams. It was found that (i) the size independent fracture energy obtained by using above two approaches yielded similar value and (ii) tensile stress increases with the increase of % of fibers. These two fracture properties will be very much useful for the analysis of cracked concrete structural components.

Fracture Behavior of $Al_2O_3$ Macro-composites with Layered and Fibrous Structure (층상 및 섬유상 $Al_2O_3$ 거시복합체의 파괴거동)

  • 신동우;윤대현;박삼식;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.758-766
    • /
    • 1997
  • Non-brittle fracture behaviour of the two composite structures made of two different brittle materials was investigated using 3-point bending test. First, the layered and fibrous macro-composites were fabricated using the material easily formed, yet showing a brittle fracture behaviour similar to ceramics. The layered and fibrous Al2O3 /Al2O3 composites with weak interface were also fabricated using plate of 2 mm thickness and rod of 3 mm diameter respectively. Comparison of the mechanical properties between these two structures was performed in the lights of flexural strength and work of fracture for the composites consisting of Al2O3 and simulated materials respectively. The strength ratio of layered structure to the monolith of same volume was 0.6 and the ratio of fibrous one was about 0.2 for the composites made of simulated brittle material. The ratio of the work of fracture of the fibrous to the layered was 0.47. For Al2O3/Al2O3 composites, the strength ratio of layered and fibrous structures to the monolith with same volume were about 0.6 and 0.2 respectively. The ratio of work of fracture of the fibrous to the layered was 0.6. These confirmed that the layered structure was superior to the fibrous one in terms of flexural strength and work of fracture.

  • PDF

Effect of Plasma Treatment of Aluminum on the Fracture Toughness of Aluminum/CFRP Composites (알루미늄의 플라즈마 표면처리가 알루미늄/CFRP 복합재의 파괴인성에 미치는 영향)

  • 신명근;이경엽
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.153-157
    • /
    • 2003
  • In the present work, the effect of plasma treatment of aluminum on the fracture toughness of CFRP/aluminum composites was investigated. The surface of the aluminum was treated by a DC plasma. The plasma treatment was carried out at volume ratio of acetylene gas to nitrogen gas of 5:5 and the treatment time used was 30 sec. Cracked lap shear specimens of aluminum/CFRP composites were made using secondary bonding procedure. Fracture toughness of aluminum/CFRP composites was determined using the work factor approach. Then, the fracture toughness of plasma-treated aluminum/CFRP composites was compared with that of untreated aluminum/CFRP composites. The results showed that the fracture toughness of plasma-treated aluminum/CFRP composites was about 50 % higher than that of untreated aluminum/CFRP composites.

$G_IC$ determination of unidirectional graphite /epoxy DCB composites from the elastic work factor approach (탄성일인자방법을 적용한 단일방향 탄소섬유/에폭시 DCB 시편의 파괴인성 결정)

  • Rhee, Kyeong-Yeop;Lee, Joong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.540-544
    • /
    • 1998
  • Compliance calibration method is frequently used to determine $G_IC$ from the DCB composite specimen. However, the method requires at least 4 to 5 fracture test (loading-unloading) records. In this study, $G_IC$ of unidirectional graphite/epoxy DCB composites was determined from the elastic work factor approach which uses a single fracture test record. In order to inspect the validity of the elastic work factor approach, $G_IC$ determined from the elastic work factor approach was compared to that of determined from the compliance calibration method. It was shown that $G_IC$ determined from the elastic work factor approach was comparable to that determined from the compliance calibration method. That is, the elastic work factor approach can be used to determine $G_IC$ of unidirectional graphite/epoxy DCB specimen from a single fracture record.

Experimental and numerical analysis of mixed mode I/III fracture of sandstone using three-point bending specimens

  • Li, Yifan;Dong, Shiming;Pavier, Martyn J.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.725-736
    • /
    • 2020
  • In this work the mixed mode I/III fracture of sandstone has been studied experimentally and numerically. The experimental work used three-point bending specimens containing pre-existing cracks, machined at various inclination angles so as to achieve varying proportions of mode I to mode III loading. Dimensionless stress intensity factors were calculated using the extended finite element method (XFEM) for and compared with existing results from literature calculated using conventional finite element method. A total of 28 samples were used to conduct the fracture test with 4 specimens for each of 7 different inclination angles. The fracture load and the geometry of the fracture surface were obtained for different mode mixities. Prediction of the fracture loads and the geometry of the fracture surface were made using XFEM coupled with a cohesive zone model (CZM) and showed a good comparison with the experimental results.

Cleavage Fracture Phenomenon in Silicon Chips with Wafer Grinding-Induced Scratch Marks (웨이퍼 그라인딩 공정으로 생성된 스크래치 마크를 갖는 실리콘 칩들에서의 벽개 파괴현상)

  • Lee, Dong-Ki;Lee, Tea-Gyu;Lee, Seong-Min
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.726-731
    • /
    • 2011
  • The present work shows how the flexural displacement-induced fracture strength of silicon devices, whose back surfaces have wafer grinding-induced scratch marks, depends on the crystallographic orientation. Experimental results indicate that silicon devices with scratch marks parallel to their lateral direction (i.e. reference axis in this work) are very susceptible to flexural fracture, as compared to devices with marks which deviated from the direction. The 3-point bending test shows that the fracture strength of silicon devices having marks which are oriented away from the reference axis is 2.6 times higher than that of devices with marks parallel to the axis. It was particularly interesting to see that silicon devices with identical preferred marks even reveal different fracture strengths, depending on whether the marks are involved in specific crystal planes such as {111} or {011}, called cleavage planes. This work demonstrates that silicon devices with the reference axis-aligned scratch marks not existing on such cleavage planes can have higher fracture strength approximately 20% higher than those existing on the planes.

Determination of Double-K Fracture Parameters of Concrete Using Split-Tension Cube: A Revised Procedure

  • Pandey, Shashi Ranjan;Kumar, Shailendra;Srivastava, A.K.L.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.163-175
    • /
    • 2016
  • This paper presents a revised procedure for computation of double-K fracture parameters of concrete split-tension cube specimen using weight function of the centrally cracked plate of finite strip with a finite width. This is an improvement over the previous work of the authors in which the determination of double-K fracture parameters of concrete for split-tension cube test using weight function of the centrally cracked plate of infinite strip with a finite width was presented. In a recent research, it was pointed out that there are great differences between a finite strip and an infinite strip regarding their weight function and the solution of infinite strip can be utilized in the split-tension specimens when the notch size is very small. In the present work, improved version of LEFM formulas for stress intensity factor, crack mouth opening displacement and crack opening displacement profile presented in the recent research work are incorporated. The results of the double-K fracture parameters obtained using revised procedure and the previous work of the authors is compared. The double-K fracture parameters of split-tension cube specimen are also compared with those obtained for standard three point bend test specimen. The input data required for determining double-K fracture parameters for both the specimen geometries for laboratory size specimens are obtained using well known version of the Fictitious Crack Model.

Application of Work Factor to Determine Fracture Toughness of Unidirectional Graphite/Epoxy Composites under Hydrostatic Pressure (정수압을 받는 일방향 탄소섬유/에폭시 복합재의 파괴인성 결정을 위한 일인자 적용)

  • 이경엽
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.46-49
    • /
    • 2001
  • In this paper. tile validity of work factor approach was investigated to determine compressive fracture toughness of unidirectional graphite/epoxy composites under hydrostatic pressure environment. The elastic work factor was determined under various pressures as a function of delamination length. It was found that elastic work factor was not affected by hydrostatic pressure.

  • PDF

Systematic Study of Paper Breaks in Papermaking Process Using Fracture Mechanics - (1) Evaluation of fracture Toughness in Wet State

  • Seo, Yung-B;Roh, You-Sun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.5
    • /
    • pp.37-44
    • /
    • 2001
  • Fracture toughness was considered as one of the good estimates of the paper break tendency of paper web in the press room. Paper break on the paper machine is caused by many factors such as paper machine irregular vibrations, impurities in the fiber furnish, shives, and so on. On the paper machine, the solid content of paper web is changing very rapidly from less than 1% to over 95%. We tried to measure the fracture toughness of paper web at different solid contents for providing the fundamental knowledge of paper break. Stretches of wet web were also measured and compared to the fracture toughness changes. Four different fiber furnishes (SwBKP, HwBKP, ONP, and OCC) were refined to different degrees, and at different solid contents (40%, 60%, 80% and 95%), their fracture toughnesses were measured. Two fracture toughness measurement methods (essential work of fracture and Tryding's load-widening method) were used, and we found they gave identical results. The stretch curves of the wet webs against the axis of solid contents were very similar to the fracture toughness curves of those.

  • PDF