• Title/Summary/Keyword: Work hardening

Search Result 367, Processing Time 0.026 seconds

Characteristics on Surface Hardening by using of Continuous Wave Nd:YAG Laser of Cold-Work Die Steel(STD11) about Variation of Focal Lens F-number (초점렌즈 F-수 변화에 의한 냉간금형강 STD11 의 연속파 Nd:YAG 레이저 표면경화 특성)

  • Hwang, Chan-Youn;Yang, Yun-Seok;Lee, Ka-Ram;Yoo, Young-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.395-408
    • /
    • 2012
  • An experimental investigation with 2.8kW Nd:YAG laser system was carried out to study the effects of different laser process parameters on the microstructure and hardness of STD11. The optical lens with the elliptical profile are designed to obtain a wide surface hardening area with uniform hardness. The Laser beam is allowed to scan on the surface of the work piece varying the power (1600, 1800 and 1900kW) and traverse speed (200, 400, 600, 800 and 1000mm/min) at three different F-numbers of lens. After laser surface treatment three zones, In the microstructure have been observed : melted zone(decarburization), heat affected zone(martensite), and the substrate.

Finite Element Analysis for Micro-Forming Process Considering the Size Effect of Materials (소재 크기효과를 고려한 미세가공공정 유한요소해석)

  • Byon, S.M.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.544-549
    • /
    • 2006
  • In this work, we have employed the strain gradient plasticity theory to investigate the effect of material size on the deformation behavior in metal forming process. Flow stress is expressed in terms of strain, strain gradient (spatial derivative of strain) and intrinsic material length. The least square method coupled with strain gradient plasticity was used to calculate the components of strain gradient at each element of material. For demonstrating the size effect, the proposed approach has been applied to plane compression process and micro rolling process. Results show when the characteristic length of the material comes to the intrinsic material length, the effect of strain gradient is noteworthy. For the microcompression, the additional work hardening at higher strain gradient regions results in uniform distribution of strain. In the case of micro-rolling, the strain gradient is remarkable at the exit section where the actual reduction of the rolling finishes and subsequently strong work hardening take places at the section. This results in a considerable increase in rolling force. Rolling force with the strain gradient plasticity considered in analysis increases by 20% compared to that with conventional plasticity theory.

A Constitutive Model for Soil Using Mohr-Coulomb Criteria (Mohr-Coulomb식(式)을 사용한 흙의 구성(構成)모델)

  • Lee, Hyung Soo;Lee, Byung Dae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1405-1415
    • /
    • 1994
  • The soil on the behavior of the nonlinear elastic work-hardening plasticity has a variety of stress paths due to the state of soil and the test conditions. The soil with a specific volume ${\upsilon}$ in principal stress space (${\sigma}_1$, ${\sigma}_2$, ${\sigma}_3$, and ${\upsilon}$v) displays the shape of an irregular hexagonal pyramid with an end cap. With variations of ${\upsilon}$ the size of the cap is changed but its shape remains unchanged and the movement of the cap is controlled by the increase or decrease of the plastic volumetric strain. By reflecting such a property of soil various cap models have been developed by researchers. In this thesis, a constitutive model of soil with a combination of the nonlinear elastic work-hardening plastic cap and the failure surfaces of Mohr-Coulomb (M-C cap model) has been developed. According to the the results of analyses using the work-hardening plastic cap model, the normally consolidated soil under shearing has experienced the work-hardening and plastic flow (movement of the cap). But in the shearing of the overconsolidated soil the elastic behavior is shown until the stress path has reached the failure surface and the cap does not move.

  • PDF

Forming of Automotive Outer Body Panel using High Strength Steel Sheet for Improving Dent Resistance (차체 외판 부품의 내덴트성 향상을 위한 고강도 강판의 성형에 관한 연구)

  • Kim, T.J.;Kim, I.S.;Jung, Y.I.;Yoon, C.S.;Lim, J.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.322-325
    • /
    • 2007
  • Dent resistance is an important characteristic to avoid damage on automotive outer panels. From a practical point of view, dents can be caused in a number of ways. Considering doors as an example, denting can occur from stone impacts or from the careless opening of an adjacently parked vehicle door. Denting can occur where the door surface is smooth and may not have sufficient curvature to resist dent. These exterior body parts are designed to improve dent resistance using a combination of work hardening and bake hardening. In brief, dent is affected by the shape of the parts and the material properties such as yield strength, strain and thickness. In this work, forming of door outer panel is investigated by Taguchi method. Main parameters are yield strength, thickness, blank size, blank holding force and so on. For the given value of design parameters, forming analysis of the thirty six cases are carried out according to L18 orthogonal array. After comparing the performance by simple conversion of simulation results into dent resistance, the final suggestion of the forming parameters is verified for the best improvement of dent resistance.

  • PDF

An Evaluation of Plastic Flow Characteristic for local structure of Weldment in Power Plant using SP test and Inverse FEA (역해석과 소형펀치 시험에 의한 발전설비 용접부의 소성유동특성 평가)

  • Baek, Seung-Se;Kwon, Il-Hyun;Kim, Hoi-Hyun;Lee, Dong-Hwan;Yang, Sung-Mo;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.308-313
    • /
    • 2004
  • SP test has been confirmed the availability, however the application of SP test is hampered because the relation of stress-strain and load-displacement is not determined definitely. This study suggested an evaluation technique of plastic flow characteristic for X20CrMoV121 steel weldment through inverse analysis using SP test and finite element analysis(FEA). From the result, good agreement was found in load-displacement curves obtained from SP test and FEA. Also, The behavior of load-displacement curve from FEA show a rule that load is increase with increasing K(strength coefficient) and displacement is increase with increasing n(work hardening index). From the inverse analysis, true stress-strain curve could be obtained for each local structure of weldment. And the CGHAZ and WM, which showed lower load- displacement behavior, have smaller work hardening index, while FGHAZ have the largest index.

  • PDF

The piling-up/sinking-in response of elasto-plastic materials in nano-indentation using sharp indenter (나노 인덴테이션 시험에서의 탄소성 재료의 파일업/싱크인 특성)

  • Kim, Byung-Min;Lee, Chan-Joo;Lee, Jung-Min;Lee, Sang-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1367-1372
    • /
    • 2007
  • Over the past decade, many computational researches have been performed to investigate quantitative relationships between load-displacement and material properties. But piling-up which causes errors to estimate mechanical material properties remains the most significant unresolved issue in nano-indentation test. This study has estimated quantitative aspects of the effects of material properties, especially work hardening exponent, on piling up/sinking in response of various materials. Using FE Analysis, piling up/sinking in response when material is indented by sharp indenter is investigated to evaluate the effects of material properties. From the FE analysis result, quantitative relationships between piling up/sinking in height and material properties is assessed using dimensional analysis which is used to define scaling variables and universal functions. And nano-indentaion test is performed to verify this relation on various materials. From the result of comparison with prediction from dimensional function and experiment, the work hardening exponent was found to have greater influence on the piling up/sinking in height during the nano-indentation than other material properties, such as elastic modulus and yield stress.

  • PDF

Undrained Behaviour of Granular Soil Using Single Work-Hardening Model (단일항복면 구성모델에 의한 입상토의 비배수거동해석)

  • Jeong, Jin Seob;Kim, Chan Kee;Lee, Moon Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.177-189
    • /
    • 1992
  • This paper aims at developing a finite element program to predict undrained behavior of granular soil by using elasto-plastic constitutive model. A computer program developed by authors based on Christian's techniques for undrained behaviour of the soil has been employed coupled with Lade's single work-hardening model. Modification of the program for drained behaviour, considering restraint of volumetric strain, makes it possible to analize the underained behaviour. To validate the newly developed program, comparison of results was performed between numerical values and experimental data for Baekma river sand as well as Sacrmento river sand studied by Seed and Lee. The program is evaluated to have high accuracy.

  • PDF

Development of Door Outer Panel using High Strength Steel Sheet for Improving Dent Resistance (내덴트성 향상을 위한 고강도 도어 외판 개발)

  • Kim, I.S.;Kim, T.J.;Jung, Y.I.;Yoon, C.S.;Lim, J.D.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.254-259
    • /
    • 2007
  • Dent resistance is an important characteristic to avoid damage on automotive outer panels. From a practical point of view, dents can be caused in a number of ways. Considering doors as an example, denting can occur from stone impacts or from the careless opening of an adjacently parked vehicle door. Denting can occur where the door surface is smooth and may not have sufficient curvature to resist dent. These exterior body parts are designed to improve dent resistance using a combination of work hardening and bake hardening. In brief, dent is affected by the shape of the parts and the material properties such as yield strength, strain and thickness. In this work, forming of door outer panel is investigated by Taguchi method. Main parameters are yield strength, thickness, blank size, blank holding force and so on. For the given value of design parameters, forming analysis of the eighteen cases are carried out according to L18 orthogonal array. After comparing the performance by simple conversion of simulation results into dent resistance, the final suggestion of the forming parameters is verified for the optimal improvement of dent resistance.

Microstructure and Mechanical Properties of Clad(A4045/A3003) Al Alloy by Gas Tungsten Arc Welding (가스텅스텐아크 용접한 클래드(A4045/A3003) 알루미늄 합금의 기계적성질 및 미세조직)

  • Kim, Ki-Bin;Gook, Jin-Seon;Yoon, Dong-Ju;Kim, Byung-Il;Lee, Il-Cheon
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.73-78
    • /
    • 2008
  • In this paper, research was the variation of microstructure and mechanical properties of clad(A4045/A3003) Al alloy sheet by gas tungsten arc welding. Tensile properties of the gas tungsten arc welding joint decreased because of the softened heat affected zone(HAZ). The hardness of HAZ was lower than that of base metal, because relieved the work hardening effect of the welding heat. Hardness distribution of the weld zone with the base metal appears similarly, but the hardness of HAZ decreased remarkably. The microstructure in the weld zone of A4045 clad layer was formed a coarse columner grains of Si-rich. In the case of large weld heat input, the Si of the A4045 were diffused and until A3003 weld zone they decreased the strength.

Prediction on Flow Stress Curves and Microstructure of 304 Stainless Steel (304 스테인리스강이 고온 유동응력곡선과 미세 조직의 예측)

  • 한형기;유연철;김성일
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.72-79
    • /
    • 2000
  • Dynamic recrystallization (DRX), which may occur during hot deformation, is important for the microsturctural evolution of 304 stainless steel. Especially, the current interest in modelling hot rolling demands quantitative relationships among the thermomechanical process variables, such as strain, temperature, strain rate, and etc. Thus, this paper individually presents the relationships for flow stress and volume fraction of DRX as a function of processing variables using torsion tests. The hot torsion tests of 304 stainless steel were performed at the temperature range of 900~110$0^{\circ}C$ and the strain rate range of 5x10-2~5s-1 to study the high temperature softening behavior. For the exact prediction of flow stress, the equation was divided into two regions, the work hardening (WH) and dynamic recovery (DRV) region and the DRX region. Especially, The flow stress of DRX region could be expressed by using the volume fraction of DRX (XDRX). Since XDRX was consisted of the critical strain($\varepsilon$c) for initiation of dynamic recrystallization (DRX) and the strain for maximum softening rate ($\varepsilon$*), that were related with the evolution of microstructure. The calculated results predicted the flow stress and the microstructure of the alloy at any deformation conditions well.

  • PDF