• Title/Summary/Keyword: Work Hardening

Search Result 367, Processing Time 0.025 seconds

A Study on the Improvement of the Wear Resistance of P-bronze (인청동의 내마모성향상에 대한 연구)

  • Song, Kun;Kwun, Sook-In;Cha, Young-Hyun
    • Tribology and Lubricants
    • /
    • v.4 no.1
    • /
    • pp.56-68
    • /
    • 1988
  • The wear resistance of P-bronze which is widely used as worm gear material was investigated. In order 1o study the effect of additional elements on the wear resistance of Pbronze, the applied load and sliding time were selected as variables, and SCM4, were used as against metal. The addition of Fe improve wear resistance, for it precipities hard Fe$_3$ P phase and the work hardening coefficients are lowered due to decreasing solubility of P. When Fe is added in conventional P-bronze, the alloy is rather sliding than forming wear debris by frictional force during wear test. Experimental results indicated that the wear mechanisms for P-bronze are mainly consisted of abrasive wear due to Beilby layer forming mechanism and adhesive wear due to thermally activated wear mechanism. Moreover, the weight loss is decreased in accordance with increasing load and time. However the rate of wear loss is decreased as the sliding time is increased.

Development of Microstructure and Texture of AZ61 and AZ80 Magnesium Alloys by Hot Rolling (열간압연에 따른 AZ61 및 AZ80 마그네슘 합금의 미세조직 및 집합조직 발달에 대한 연구)

  • Lee, Ji Ho;Park, No Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.2
    • /
    • pp.49-56
    • /
    • 2020
  • Magnesium alloy is a metal with high specific strength and light weight, and is attracting attention as a next generation metal for environmentally friendly automobiles and transportation equipment. However, magnesium alloys have a problem of degrading formability due to the basal texture developed during processing, and their application is limited. Although active researches on the control of textures have been conducted in order to minimize this problem, there is a lack of research on the formation of microstructures and textures according to elemental differences. In this study, AZ61 and AZ80 magnesium alloys were selected to investigate the effects of aluminum addition on the microstructure development of magnesium alloys. This research has proven that the increase of the rolling rate results in the decrease of the average grain size of the two alloys, the increase of the hardness, and the increase of the fraction of twins. As shown on this research below, the basal texture developed strongly as the rolling ratio increased. On the other hand, this research also has proven that the two alloys exhibited different texture strength and distribution tendencies, which could be due to the effects of aluminum addition on work hardening, grain size, and twin behavior.

A Study on the Machinability of High Strength Steel with Internally Cooled Cutting Tool (공구내부냉각에 의한 고장력합금강의 피삭성에 관한 연구)

  • 김정두
    • Tribology and Lubricants
    • /
    • v.5 no.1
    • /
    • pp.44-50
    • /
    • 1989
  • High strength steel is similar to carbon steel in its composition. This material is developed originally for special uses such as aerospace and automobile due to its high strength and shock-free property in spite of lightness. But the chemical attraction of high strength steel is serious, which includes comminution of formation, metalization and strengthening. Machining results in built-up edge between this material and the tool. Especially the work hardening behavior results in tool life shortening, which was caused by temperature generation during machining. In this study, cooling system was made in which liquid nitrogen is supplied to circulate in order to make up for these weaknesses. Machining of high strength steels, which is recognized as difficult to machine materials, was conducted after tool is cooled at -195$\circ$C. Experimental results showed that the tool was cooled down rapidly below -195$\circ$C in about 200 seconds. The tool temperature of machining with cooling system was lowered by 60~95$\circ$C than that of machining in room temperature. The hardness of the surface of chip is decreased by machining with cooling system. And the machining using the cooling system made it possible to increase shear angle, to retain smooth surface on chip without built-up-edge and to get a better roughness.

The Influence of Microstructure on the Bauschinger Effect in X80 Grade API Steel (X80급 API 강의 바우싱거 효과에 미치는 미세조직의 영향)

  • Park, J.S.;Kim, D.W.;Chang, Y.W.
    • Transactions of Materials Processing
    • /
    • v.15 no.2 s.83
    • /
    • pp.118-125
    • /
    • 2006
  • API steel is used for line-pipe to transport the oil and natural gas. As the recent trends in the development of API steel are towards the use of larger diameter and thicker plate, many researches have been studied to achieve higher strength, higher toughness and lower yield ratio in API steel. However, the strength of API steel after pipe forming is changed depending on the competition of the Bauschinger effect and work hardening which are affected by the strain history during pipe forming process. So, the purpose of this study is to investigate the influence of microstructure on the Bauschinger effect for API steel. To change the microstructure of API steel we have changed the hot rolling condition and the amounts of V and Cu addition. The compression-tensile test and the microstructure observation by OM and TEM were conducted to investigate the yield strength drop and the correlation between the Bauschinger effect and microstructure of API steel. The experimental results show that the increase of polygonal ferrites volume fraction increases the Baushcinger effect due to the back stress which comes from the increase of mobile dislocation density at polygonal ferrite interior during the compressive deformation. The hot rolling condition was more effective on the Bauschinger effect in API steel than the small amount of V and Cu addition.

An experimental study on the oriented mechanical properties of aluminum micro thin foil material (알루미늄 마이크로 박판소재의 방향성에 관한 실험적 연구)

  • Lee H. J.;Lee N. K.;Choi S.;Lee H. W.;Choi T. H.;Hwang J. H.;Kwag D. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.295-298
    • /
    • 2005
  • This paper is concerned with the precision material property measurement of a micro metal thin foil that is used in MEMS technology. Since these MEMS components require great precision and accuracy, evaluation of reliability such as the lift cycle endurance test, impact test, and residual stress test is necessary for these components. However, in practice, real reliability tests are not easy to perform due to consideration of various factors. Rather than actual testing, it would be much easier to evaluate the reliability of components by the analytical approach. Although the analytical method is utilized by software tools, it is obviously necessary to acquire fundamental properties of materials through real test methods. In this paper, the oriented mechanical properties of aluminum thin foil are measured by nano scale material property measurement system.

  • PDF

Development of Finite Element Program for Analyzing Springback Phenomena of Non-isothermal Forming Processes for Aluminum Alloy Sheets (Part II : Theory & Analysis) (알루미늄 합금박판 비등온 성형공정 스프링백 해석용 유한요소 프로그램 개발 (2부 : 이론 및 해석))

  • Keum Y. T.;Han B. Y.;Wagoner R.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.08a
    • /
    • pp.13-20
    • /
    • 2003
  • The implicit, finite element analysis program for analyzing the springback in the warm forming process of aluminum alloy sheets was developed. For the description of planar anisotropy in warm forming temperatures, Barlat's yield function is employed, and the power law type constitutive equation is used in terms of working temperatures fur the depiction of work hardening in high temperatures. Also, Jetture's 4-node shell elements are introduced for reflecting the mechanical behavior of aluminum alloy sheet and the non-steady heat balance equations are solved for considering heat gain and loss during the forming process. For the springback evaluation, Newton-Raphson iteration method is introduced for overcoming the geometric nonlinearlity problem. In order to verify the validity of the FEM program developed, the stretching bending and springback processes are simulated. Though springback analysis results are slightly bigger than experimental ones, they have the same trend of the decreasing springback as the forming temperature increases.

  • PDF

Characteristics Evaluation of Process Parameters for Improvement the Precision of Thread ]tolling in Lead Screw (Lead Screw 전조 정밀도 향상을 위한 성형인자의 특성평가)

  • 김광호;김동환;고대철;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.312-315
    • /
    • 2002
  • This paper summarizes the results of a numerical study conducted to analyze the effect of selected process parameters on material flow and thread profile in thread rolling of large diameter blanks. Based on the previous work where a plane strain mode was found to provide a reasonable approximation of the thread rolling process, the effect of varying thread form, friction factor, flow stress, and blank diameter on effective strain and thread height was analyzed using the finite element code DEFORM. This study show that effective strain for flank angle, that blank diameter had important effect on the as-rolled thread while flow stress, friction factor, and crest round of dies had significant impact on effective strain at the thread root and crest and load of thread rolling. While the rate of strain harding was found to have an effect on the crest profile, the results indicate that it is the primary factor responsible for seam formation in rolled threads.

  • PDF

Effects of Drawing Parameters on Mechanical Properties of BAS121 Alloy Tubes for Heat-exchangers by High Frequency Induction Welding (고주파유도용접된 열교환기용 BAS121합금튜브의 기계적 특성에 미치는 인발조건의 영향)

  • Han Sang-Woo;Kim Byung-Il;Lee Hyun-Woo;Chon Woo-Young;Gook Jin-Seon
    • Korean Journal of Materials Research
    • /
    • v.14 no.12
    • /
    • pp.851-856
    • /
    • 2004
  • The aim of this study is to investigate the optimum drawing parameter for BAS121 welded tubes. The BAS121 aluminium alloy tubes with 25 mm in external diameter and 1.3 mm in thickness for heat-exchangers were manufactured by high frequency induction welding with the V shaped convergence angle $6.5^{\circ}$ and power input 55 kW. With increasing the reduction of area ($13,\;21\%$) by drawing, tensile strength was increased and elongation was decreased. With increasing the reduction of area by drawing, hardness in weld metal increased rapidly, while that of base metal increased slowly. In the specimen with the outer diameter smaller than 22 mm, hardness of weld metal was higher than that of base metal. The optimum drawing parameter of area reduction in BAS121 alloys was estimated about $13\%$ because of the work hardening of welds.

The Effect of Compressive Residual Stress of Spring Steel for Vehicle on Corrosion (차량용 스프링강재의 압축잔류응력이 부식에 미치는 영향)

  • Park Keyungdong;An Jaepil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.159-165
    • /
    • 2005
  • Shot peening can be defined as the process of work hardening of the surface of components by means of propelled stream of spherical shot. Benefits due to shot peening are increase in resistance to fatigue, stress corrosion cracking, fretting, galling, erosion and closing of pores. In this study, the influence of shot peening on the corrosion was investigated on spring steel immersed in $3.5\%\;NaCl$. The immersion test was performed on the two kinds of specimens. Corrosion potential, polarization curve, residual stress and etc. were investigated from experimental results. From test results, the effect of shot peening on the corrosion was evaluated. The important results of the experimental study on the effects of shot peened spring steels on the environment corrosion are as follows; In case of corrosion potential, shot peened specimen shows more activated negative direction as compared with parent metal. Surface of specimen, which is treated with the shot peened, is placed as more activated state against inner base metal. It can cause the anti-corrosion effect on the base metal.

Deformation Behavior of Corrosion-Resistant Fe-Cr Alloy

  • Era, Hidenori;Kono, Yusuke;Sasabuchi, Ryota;Miyoshi, Noriko;Tokunaga, Tatsuya;Shinozaki, Nobuya;Lee, Je-Hyun;Shimozaki, Toshitada
    • Applied Microscopy
    • /
    • v.46 no.1
    • /
    • pp.45-50
    • /
    • 2016
  • Iron containing a high amount of chromium is known to be inferior to ductility due to ${\sigma}$ phase formation so that it is generally difficult to apply the plastic deformation process although the alloy possesses a superior characteristics of an excellent corrosion resistance. In this study, Fe-50mass%Cr alloy was melted using high purity powder and the deformation behavior has been investigated by cold rolling and tensile test. The tensile test yielded that the alloy revealed a serration at an early stage of tensile deformation and then the serrated flow vanished to change to a normal work hardening flow at the later stage. The former was governed by twin formation process, the latter by dislocation multiplication one, bringing about a high ductility of 20% or over. The reduction ratio in cold rolling was attained as high as 90%, thus the high corrosion-resistant alloy is able to possess a high ductility.