• Title/Summary/Keyword: Work Hardening

Search Result 367, Processing Time 0.029 seconds

The Effects of Molybdenum Content on the Dynamic Properties of Tungsten-based Heavy Alloys

  • Lee, Woei-Shyan;Chan, Tien-Yin
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1155-1156
    • /
    • 2006
  • Hopkinson bar dynamic test under strain rates ranging from 2000 $s^{-1}$ to 8000 $s^{-1}$ at room temperature revealed that the flow stress of tungsten heavy alloys depended strongly on the strain, strain rate, and the content of molybdenum. The variation of flow stress was caused by the competition between work hardening and heat softening in the materials at different strain rates. The high temperature strength of the matrix phase was increased by the addition of molybdenum, which enhanced the strength of the tungsten heavy alloys in high strain rate test.

  • PDF

In-field Evaluation of Structural Strength and Reliability Using Advanced Indentation System (Advanced Indentation System을 이용한 현장에서의 구조강도 건전성 평가)

  • Choi, Yeol;Son, Dong-Il;Jang, Jae-Il;Kwon, Dong-Il
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.230-237
    • /
    • 2001
  • For the structural integrity of large and complex structures such as railway vehicle, the in-field diagnosis of mechanical properties of the structures is needed, and especially, the mechanical characteristics of the weldment must be carefully evaluated. But, conventional standard testing methods having destructive procedures are not applicable to in-field assessment of mechanical property variations within weldment because they needs the limitations of specimen size and geometry. In this paper, to overcome this problems, the advanced indentation technique (AIS) is introduced for simple and non-destructive/in-field testing of weldment of industrial structures. This test measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation and fracture. First of all, flow properties such as yield strength, tensile strength and work hardening index can be evaluated through the analysis of the deformation behavior beneath the spherical indenter. Additionally, case studies of advanced indentation techniques are introduced.

  • PDF

Inverter for Induction Heating using Simultaneous Dual-Frequency Method (동시 이중주파수 구동을 이용한 유도가열용 인버터)

  • Shin, Woo-Seok;Park, Hee-Chang
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.554-560
    • /
    • 2011
  • Single-frequency induction heating equipment caused by a hardening heat treatment process of the double investment in the issue and allow the heat treatment process in order to shorten the time from one process to work simultaneously on two kinds of processes that allow Simultaneous Dual Frequency(SDF) drive scheme technology are described. In this paper, we propose a dual way to drive a simultaneous dual-frequency drive scheme has been implemented. Through simulations and experiments, we can obtain the validity of the proposed inverter for dual-frequency control and power control.

Ultimate behavior of reinforced concrete cooling tower: Evaluation and comparison of design guidelines

  • Noh, Hyuk-Chun;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.223-240
    • /
    • 2006
  • Taking into account the geometrical and material nonlinearities, an ultimate behavior of reinforced concrete cooling tower shell in hyperbolic configuration is presented. The design wind pressures suggested in the guidelines of the US (ACI) and Germany (VGB), with or without the effect of internal suction, are employed in the analysis to examine the qualitative and quantitative characteristics of each design wind pressure. The geometrical nonlinearity is incorporated by the Green-Lagrange strain tensor. The nonlinear features of concrete, such as the nonlinear stress-strain relation in compression, the tensile cracking with the smeared crack model, an effect of tension stiffening, are taken into account. The biaxial stress state in concrete is represented by an improved work-hardening plasticity model. From the perspective of quality of wind pressures, the two guidelines are determined as highly correlated each other. Through the extensive analysis on the Niederaussem cooling tower in Germany, not only the ultimate load is determined but also the mechanism of failure, distribution of cracks, damage processes, stress redistributions, and mean crack width are examined.

Enhanced Spherical Indentation Techniques for Property Evaluation (향상된 구형 압입 물성평가법)

  • Lee, Hyung-Yil;Lee, Jin-Haeng
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.461-471
    • /
    • 2007
  • In this work, indentation theory of Lee $et al.^{(1)}$ for 6% indentation of indenter diameter is extended to an indentation theory for 20% indentation. For shallow indentation, the effect of friction on load-depth curve is negligible, but different materials can show nearly identical load-depth curves. On the basis of this observation, a new numerical approach to deep indentation techniques is proposed by examining the finite element solutions. With this new approach, from the load-depth curve, we obtain stress-strain curve and the values of Young's modulus, yield strength and strain-hardening exponent with an average error of less than 3%.

Effect of Strain Rate on Plastic Deformation Behavior of Y-CSZ Single Crystal

  • Cheong, Deock-Soo;Kim, Chang-Sam
    • Korean Journal of Materials Research
    • /
    • v.20 no.1
    • /
    • pp.7-11
    • /
    • 2010
  • Yttria stabilized zirconia (Y-CSZ) single crystals show plastic deformation at high temperatures by activating dislocations. The effect of strain rate on the plastic behavior of this crystal was studied. As increasing strain rate from $\varepsilon=1.04\times10^{-5} sec^{-1}$ to $2.08\times10^{-5} sec^{-1}$ the yield drop was suppressed and resulted in higher Young's modulus and yield stress. Dislocation structures of the strained crystals were analyzed using a transmission electron microscope to elucidate the plastic behavior of these crystals. In the early stage of plastic deformation, dislocation dipoles and prismatic dislocation loops were formed in both samples. However, dislocation density was increased by increasing strain rate. Strong sessile dislocations were observed in the sample with higher strain rate, which may cause the higher work hardening.

Quality Assessment by Analysis of Yoke Caulking Process Considering Strain Rate Sensitivity (변형률속도 민감성을 고려한 요크 코킹공정의 해석에 의한 품질 평가)

  • 박문식;강경모;한덕수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.37-46
    • /
    • 2003
  • This paper is to predict quality deterioration resulting from a caulking process of yoke which is a part of automotive steering system. The caluking is a plastic deformation process involving such as impact of high speed tool, contacts between part and fixtures and strain rate sensitivity of the part material. Elaborate application of finite element method is neccesary to calculate changes of part dimensions because they fall into a level of tolerances. Simple work hardening and strain rate sensitive model is proposed fur the material and applied for the simulation by using Abaqus which is able to cater for elastoplastic rate sensitive material and contacts. Numerical results of test models that represent tensile bar and tensile plate are compared with material data inputs. Dimensional changes for the yoke are calculated from simulations and compared to the mesurements and they show good agreement. The method presented here with the material model proved to be valuable to assess quality deterioration for similar metal forming processes.

Rotation of Orthotropy Axes under Plane Stress (평면응력하에서의 직교이방성 대칭축의 회전)

  • 인정제;김권희
    • Transactions of Materials Processing
    • /
    • v.3 no.3
    • /
    • pp.320-334
    • /
    • 1994
  • A set of full size cold rolled steel sheets has been prestrained in the direction of rolling by uniform tensile elongation of 3% and 6%. Then mid-sized tensile specimens were cut from each of the full size sheets at 30, 45, 60 and 90 degrees to the rolling direction. The mid-sized tensile specimens were then prestrained again by uniform tensile elongation by 1%, 2%, 5%, 10% and 15%. finally, miniature tensile specimens were prepared from each of the mid-sized specimens at every 10 degrees to the specimen axis. From the tensile tests on miniature specimens material's hardening behavior under non-proportional loading has been investigated. There are a number of new observations which has not been known to the authors before current work. One of them is continuous reservation of orthoropic symmetry during tensile elongation of mid-sized specimens. Another is continuous rotations of orthotropy axes. Existing theories seem to fail to explain this observations. A new model is proposed in relation to the rotation of orthotropy axes.

  • PDF

The Evolution of Dynamically Recrystallized Microstructure for SCM 440 (SCM 440 강재의 동적 재결정 조직 변화에 관한 연구)

  • 한형기;유연철
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.35-41
    • /
    • 2001
  • The high temperature deformation behavior of SCM 440 can be characterized by the hot torsion test in the temperature ranges of $900^{\circ}C$~$1100^{\circ}C$ and strain rate ranges of 0.05/sec~5/sec. The aim of this paper is to establish the quantitative equation of the volume fraction of dynamic recrystallization (DRX) as a function of processing variables, such as strain rate ($\varepsilon$), temperature (T), and strain ('$\varepsilon$). During hot deformation, the evolution of microstructure could be analyzed from work hardening rate ($\theta$). For the exact prediction of dynamic softening mechanism the critical strain ($\varepsilon_c$), the strain for maximum softening rate ($\varepsilon^*$ and Avrami' exponent (m') were quantitatively expressed by dimensionless parameter, Z/A, respectively. The transformation-effective strain-temperature curve for DRX could be composed. It was found that the calculated results were agreed with the experimental data for the steel at any deformation conditions.

  • PDF

Characteristics of Zn-Ni Electrodeposition of 60 kgf/$\textrm{mm}^2$ Grade Transformation Induced Plastic Steel Sheets for Automotive Body (60 kgf/$\textrm{mm}^2$급 자동차용 변태유기소성강화강 Zn-Ni 전기도금 특성 연구)

  • Kim D. H.;Kim B. I.;Jeon Y. T.;Jeong Y. S.
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.263-272
    • /
    • 2004
  • High strength steels such as transformation induced plastic steel, dual phase and solid solution Hardening have been developed and continuously improved due to the intensified needs in the automotive industry. But silicon and manganese in transformation induced plastic steels were known to exhibit harmful effects on galvannealing reaction by oxide film formed during heat treatment. Therefore, in this work, the applicability of Zn-Ni electrodeposition instead of hot dip galvannealed coating to transformation induced plastic steels was evaluated and optimum electroplating condition was investigated. Based on these investigations optimized electroplating conditions were proposed and Zn-Ni electrogalvanized steel sheet was produced by EGL (electrogalvanized line). Its perfomance properties for automotive steel was evaluated.