• Title/Summary/Keyword: Work Hardening

Search Result 364, Processing Time 0.025 seconds

Field Application Study for Soil Improvement and Existing Foundation Protection Work by Hi-FA(High performance and Multi functional Agent) (Hi-FA(유동성 및 점성 개질제)를 이용한 지반보강 및 기존 교량기초 보강공법에 대한 실용화 연구)

  • Kim, Myung-Hak;Park, Myoung-Deuk;Yoon, Tae-Gook;Lee, Yong-Jun;Park, Min-Cheol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.664-675
    • /
    • 2010
  • Recently environment-friendly construction method is major trend in both domestic and world constrction fields. In this paper High Functional Performance Agent(Hi-FA) which has various improved engineering characteristics different with conventional Portland cement grouting, such as high viscosity, liquidity, void filling ability, early hardening, and separation resistance, was analyzed by field and laboratory test. Also soil improvement and existing deep foundation protection works were performed and analyzed using Hi-FA.

  • PDF

Effects of the Electroplating Duration on the Mechanical Property of the Ni-Co-SiC Composite Coatings

  • Kim, Sung-Min;Lee, Hong-Kee
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.6
    • /
    • pp.255-259
    • /
    • 2010
  • In this work, Ni-Co composites incorporated with nano-sized SiC particles in the range of 45-55 nm are prepared by electroplating. The effects of plating duration on the chemical composition, surface morphology, crystalline structures and hardness have been studied. The maximum hardness of Ni-Co-SiC composite coating is approximately 633 Hv at plating duration of 1 h. The hardness is gradually decreased with increasing plating duration, which can be attributed to the growth of crystalline size and the agglomerates of SiC nano-particles. It is therefore explained that the grain refinement of Ni-Co matrix and stable dispersion of SiC particles play an important role for strengthening, which indicate Hall-Petch relation and Orowan model were dominant for hardening of Ni-Co-SiC composite coatings.

Concrete Mixture Design Method with Large Amount of Land Reclamation Ash (매립석탄회 고배합 콘크리트 배합설계 기법)

  • Han, Sang-Mook;Song, Young-Chul;Ha, Jae-Dam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.344-347
    • /
    • 2004
  • The amount of coal ash has been increasing and development of effective use is urgently needed. Various by-products and waste are expected to be used as resources from the point of reduction in environmental load. This is an experimental study to compare the properties of high volume coal ash concrete using the reclaimed coal ash. For this purpose, authors have started work to develop a production method of hardening coal ash concrete. Laboratory tests show that the optimum mixture of coal ash concrete can be determined from multiple regression analysis. According to test results, it was found that the compressive strength of the concrete can be determined by a single curve. And it is obtained from the analysis of the results tested for concrete with the ratio of total power to water and amount of land reclamation ash.

  • PDF

Study on the Hydrofilm Extrusion through Conically Converging Dies (원추형 금형을 통한 박막식 정수압 압출 에 관한 연구)

  • 신동헌;조남선;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.2
    • /
    • pp.168-174
    • /
    • 1983
  • The study is concerned with an analysis on the hydrofilm extrusion through conical dies. The upper bound method is adopted for the analysis of metal deformation in connection with hydrodynamic lubrication theory for the lubricant in order to determine the extrusion pressure for some variables such as reduction of area, die cone angle. In the upper bound method, a kinematically admissible velocity field is found by assuming proper streamlines and applying the flow function concept to the region of plastic deformation. The effect of work hardening is incorporated approximately by calculating the strains at the exit of the die. The experiments are carried out with the commercially pure aluminium for some chosen variables at room temperature. It is shown that the theoretical predictions are in good agreement with the experimental observations.

CHARACTERIZATION AND ANALYSIS OF SHEAR TEST WITH TESTING CONDITIONS ON BGA PACKAGE

  • Koo, Ja-Myeong;Kim, Dae-Up;Jung, Seung-Boo
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.463-468
    • /
    • 2002
  • This study investigates the variations of shear force, displacement, and fracture surface with the shear speed and the number of reflows. The experimental data of shear tests indicate that the shear force increases as increasing the number of reflows and the shear speed due to the formation of a kind of intermetallic compound, Ni$_3$Sn$_4$, on Au/Ni/Cu pad, and the work-hardening. However, general trends show that the shear force decreases due to increasing the thickness of the intermetallic compound over 4x reflow. It is observed that the intermetallic compound which is formed between solder and pad increases according to increasing the number of reflows, and the growth rate of the intermetallic compound at central region on the interface is faster than one at edge part. The general tendencies of shear force and displacement with different shear speeds are almost identical as an increase of the number of reflows.

  • PDF

Evaluation of Mechanical Properties for AZ31 Magnesium Alloy(1) (AZ31 마그네슘 합금 판재의 기계적 특성 평가(1))

  • Won S.Y.;Oh S.K.;Osakada Kozo;Park J.K.;Kim Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.53-56
    • /
    • 2004
  • The mechanical properties and optical micrographs are studied for rolled magnesium alloy sheet with hexagonal close packed structure(HCP) at room and elevated temperatures. Tensile properties such as tensile strength, elongation, R-value and n-value are also measured for AZ31 magnesium alloy. Magnesium with strong texture of basal plane parallel to the rolling direction usually has high R-value and plastic anisotropy at room temperature. As temperature increases, the R-value for AZ31 magnesium sheet decreases. In addition, the AZ31 sheet becomes isotropy and recrystallization above $200^{\circ}C$. Formability of magnesium alloy sheets remarkably poor at room temperature is improved by increasing temperature. Sheet forming of magnesium alloy is practically possible only at high temperature range where plastic anisotropy disappears.

  • PDF

Characterization of Microstructure and Mechanical Properties of Micro-alloyed Cold Forging Steel and Product (냉간단조용 비조질강 및 성형품의 미세조직과 기계적 특성분석)

  • Suh D.W.;Lee Y.S.;Kwon Y.N.;Lee J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.409-412
    • /
    • 2004
  • Microstructures and mechanical properties of microalloyed cold forging steel and cold forged prototype automobile part are characterized. The work hardening according to the increase of plastic strain plays a major role in increasing the tensile strength of microalloyed cold forging steel during cold forming. On the other hand, inhomogeneous distribution of plastic strain causes variations in microstructure and mechanical properties. The relation between inhomogeneous distribution of plastic strain and variations in microstructure and mechanical properties is discussed. The variation of mechanical property in cold forged automobile part is analyzed using quantitative evaluation of plastic strain from finite element method.

  • PDF

A trilinear stress-strain model for confined concrete

  • Ilki, Alper;Kumbasar, Nahit;Ozdemir, Pinar;Fukuta, Toshibumi
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.541-563
    • /
    • 2004
  • For reaching large inelastic deformations without a substantial loss in strength, the potential plastic hinge regions of the reinforced concrete structural members should be confined by adequate transverse reinforcement. Therefore, simple and realistic representation of confined concrete behaviour is needed for inelastic analysis of reinforced concrete structures. In this study, a trilinear stress-strain model is proposed for the axial behaviour of confined concrete. The model is based on experimental work that was carried out on nearly full size specimens. During the interpretation of experimental data, the buckling and strain hardening of the longitudinal reinforcement are also taken into account. The proposed model is used for predicting the stress-strain relationships of confined concrete specimens tested by other researchers. Although the proposed model is simpler than most of the available models, the comparisons between the predicted results and experimental data indicate that it can represent the stress-strain relationship of confined concrete quite realistically.

Measurement of Springback of AZ31B Mg Alloy Sheet in OSU Draw/bend Test (AZ31B 마그네슘 합금 판재의 OSU 드로우벤드 시험과 스프링 백 측정)

  • Choi, J.G.;Choi, S.C.;Lee, M.G.;Kim, H.Y.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.447-451
    • /
    • 2007
  • The springback characteristics of AZ31B magnesium alloy sheet was investigated in OSU draw/bend test Springback is the elastically-driven change of shape of a part after forming and it should be estimated and controlled to manufacture more precise products in sheet forming. Magnesium alloy sheets have unique mechanical properties such as high in-plane anisotropy/asymmetry of yield stress and hardening response. So, there will be a difference in the prediction of springback with symmetric mechanical properties for magnesium alloy sheets. In this work, the Strip draw/bend tests were conducted with various conditions - die radius, sheet thickness and controlled tensile force and the tendency of springback angle was observed from the tests.

The effect of binder in SWNT solution to gas selectivity of CNT-based gas sensors (가스센서로써 탄소나노튜브 용액속에 바인더가 가스 선택성에 미치는 효과)

  • Lee, Ho-Jung;Gam, Byung-Min;Choi, Young-Min;Kim, Seong-Jeen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.404-405
    • /
    • 2008
  • In this work, we investigated the effect of the functionalized SWNT-polymer composites for increasing sensitivity and imparting selectivity to nanotube sensors. To do this, CNT -based gas sensors were fabricated with two types of dispersed SWNT solution involving different polymer resin of TEOS (Tetraethyl orthosilicate) or MTMS (Methyl trimethoxysilane) which is blended to adhere to substrate well. As the surfaces of TEOS and MTMS surrounding SWNTs remain functionalized to -OH and $-CH_3$ groups respectively after hardening, gas adsorption will be affected differently according to the type of gases. In the experiment, we examined the response of electrical conductance for alcohol vapour gas. As the result, the conductance in the sensors using TEOS decreased considerably while that of MTMS was nearly invariable.

  • PDF