• Title/Summary/Keyword: Word-Prediction

Search Result 115, Processing Time 0.019 seconds

A study on English vowel duration with respect to the various characteristics of the following consonant (후행하는 자음의 여러 특성에 따른 영어 모음 길이에 관한 연구)

  • Yoo, Hyunbin;Rhee, Seok-Chae
    • Phonetics and Speech Sciences
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • The purpose of this study is to investigate the difference of vowel duration due to the voicing of word-final consonants in English and its relation to the types of word-final consonants (stops vs. fricatives), (partial) devoicing, and stop releasing. Addtionally, this study attempts to interpret the findings from the functional view that the vowels before voiced consonants are produced with a longer duration in order to enhance the salience of the voicing of word-final consonants. This study conducted a recording experiment with English native speakers, and measured the vowel duration, the degree of (partial) devoicing of word-final voiced consonants and the release of word-final stops. First, the results showed that the ratio of the duration difference was not influenced by the types of word-final consonants. Second, it was revealed that the higher the degree of (partial) devoicing of word-final voiced consonants, the longer vowel duration before word-final voiced consonants, which was compatible with the prediction based on the functional view. Lastly, the ratio of the duration difference was greater when the word-final stops were uttered with the release compared to when uttered without the release, which was not consistent with the functional view. These results suggest that it is not sufficient enough to explain the voicing effect by its function of distinguishing the voicing of word-final consonants.

Development of a Hearing Impairment Simulator considering Frequency Selectivity of the Hearing Impaired (난청인의 주파수 선택도를 고려한 난청 시뮬레이터 개발)

  • Joo, S.I.;Kil, S.K.;Goh, M.S.;Lee, S.M.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.1
    • /
    • pp.94-102
    • /
    • 2009
  • In this paper, we propose a hearing impairment simulator considering reduced frequency selectivity of the hearing impaired, and verify it's performance through experiments. The reduced frequency selectivity was embodied by spectral smearing using linear prediction coding(LPC). The experiments are composed of 4 kinds of tests; pure tone test, speech reception threshold(SRT) test, and word recognition score(WRS) test without spectral smearing and with spectral smearing. The experiments of the hearing impairment simulator were performed with 9 subjects who have normal hearing. The amount of spectral smearing was controlled by LPC order. The percentile score of WRS test without smearing is $89.78{\pm}2.420%$. The scores of WRS with 24th LPC order and with 8th LPC order are $88.00{\pm}3.556%$ and $83.78{\pm}2.123%$ respectively. It is verified that WRS score is lowered by decreasing LPC order. This is a reasonable result considering that spectral smearing is getting heavier according to decreasing LPC order. It is confirmed that spectral smearing using LPC simulates the reduced frequency selectivity of the hearing impaired and affects the clearness of speech reception.

Verb Prediction for Korean Language Disorders in Augmentative Communicator using the Neural Network (신경망을 이용한 언어장애인용 문장발생장치의 동사예측)

  • Lee Eunsil;Min Hongki;Hong Seunghong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.1
    • /
    • pp.32-41
    • /
    • 2000
  • In this paper, we proposed a method which predict the verb by using the neural network in order to enhance communication rate in augmentative communication system for Korean language disorders. Each word is represented by an information vector according to syntax and semantics, and is positioned at the state space by being partitioned into various regions different from a dictionary-like lexicon. Conceptual similarity is realized through position in state space. When a symbol was pressed, we could find the word for the symbol at the position in the state space. In order to prevent verb prediction's redundancy according to input units, we predicted the verb after separating class using the neural network. In the result we can enhance $20\% communication rate in the restricted space

  • PDF

An expanded Matrix Factorization model for real-time Web service QoS prediction

  • Hao, Jinsheng;Su, Guoping;Han, Xiaofeng;Nie, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.3913-3934
    • /
    • 2021
  • Real-time prediction of Web service of quality (QoS) provides more convenience for web services in cloud environment, but real-time QoS prediction faces severe challenges, especially under the cold-start situation. Existing literatures of real-time QoS predicting ignore that the QoS of a user/service is related to the QoS of other users/services. For example, users/services belonging to the same group of category will have similar QoS values. All of the methods ignore the group relationship because of the complexity of the model. Based on this, we propose a real-time Matrix Factorization based Clustering model (MFC), which uses category information as a new regularization term of the loss function. Specifically, in order to meet the real-time characteristic of the real-time prediction model, and to minimize the complexity of the model, we first map the QoS values of a large number of users/services to a lower-dimensional space by the PCA method, and then use the K-means algorithm calculates user/service category information, and use the average result to obtain a stable final clustering result. Extensive experiments on real-word datasets demonstrate that MFC outperforms other state-of-the-art prediction algorithms.

Analysis of Intention in Spoken Dialogue based on Classifying Sentence Patterns (문형구조의 분류에 따른 대화음성의 의도분석에 관한 연구)

  • Choi, Hwan-Jin;Song, Chang-Hwan;Oh, Yung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.61-70
    • /
    • 1996
  • According to topics or speaker's intentions in a dialogue, utterance spoken by speaker has a different sentence structure of word combinations. Based on these facts, we have proposed the statistical approach. IDT(intention decision table), which is modeling the correlations between sentence patterns and the intention. In a IDT, the sentence is splitted into 5 different factors, and the intention of a sentence is determined by the similarity between and intention and 5 factors that have represent a sentence. From the experimental results, the IDT has indicated that the prediction rate of an intention is improved 10~18% over the word-intention correlations and is enhanced 3~12% compared with the MIG(Markov intention graph) that models the intention with a transition graph for word categories in a sentence. Based on these facts, we have found that the IDT is effective method for the prediction of an intention.

  • PDF

Learning Algorithms in AI System and Services

  • Jeong, Young-Sik;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1029-1035
    • /
    • 2019
  • In recent years, artificial intelligence (AI) services have become one of the most essential parts to extend human capabilities in various fields such as face recognition for security, weather prediction, and so on. Various learning algorithms for existing AI services are utilized, such as classification, regression, and deep learning, to increase accuracy and efficiency for humans. Nonetheless, these services face many challenges such as fake news spread on social media, stock selection, and volatility delay in stock prediction systems and inaccurate movie-based recommendation systems. In this paper, various algorithms are presented to mitigate these issues in different systems and services. Convolutional neural network algorithms are used for detecting fake news in Korean language with a Word-Embedded model. It is based on k-clique and data mining and increased accuracy in personalized recommendation-based services stock selection and volatility delay in stock prediction. Other algorithms like multi-level fusion processing address problems of lack of real-time database.

Optimized Chinese Pronunciation Prediction by Component-Based Statistical Machine Translation

  • Zhu, Shunle
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.203-212
    • /
    • 2021
  • To eliminate ambiguities in the existing methods to simplify Chinese pronunciation learning, we propose a model that can predict the pronunciation of Chinese characters automatically. The proposed model relies on a statistical machine translation (SMT) framework. In particular, we consider the components of Chinese characters as the basic unit and consider the pronunciation prediction as a machine translation procedure (the component sequence as a source sentence, the pronunciation, pinyin, as a target sentence). In addition to traditional features such as the bidirectional word translation and the n-gram language model, we also implement a component similarity feature to overcome some typos during practical use. We incorporate these features into a log-linear model. The experimental results show that our approach significantly outperforms other baseline models.

Cognitive Modeling of Unusual Association with Declarative Knowledge by Positive Affect (긍정적 감정에 따른 선언적 지식에 관한 비전형적 연상 과정에 대한 인지모델링)

  • Park, Sung-Jin;Myung, Ro-Hae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.1
    • /
    • pp.43-49
    • /
    • 2015
  • The aim of this study was to model unusual association with declarative knowledge by positive affect using ACT-R cognitive architecture. Existing research related with cognitive modeling tends to pay a lot of attention to strong and negative cognitive moderator. Mild positive affect, however, has far-reaching effects on problem solving and decision making. Typically, subjects with positive affect were more likely to respond to unusual associates in a word association task than subjects with neutral affect. In this study, a cognitive model using ACT-R cognitive architecture was developed to show the effect of positive affect on the cognitive organization related with memory. First, we organized the memory structure of stimulus word 'palm' based on published results in a word association task. Then, we decreased an ACT-R parameter that reflects the amount of weighting given to the dissimilarity between the stimulus word and the associate word to represent reorganized memory structure of the model by positive affect. As a result, no significant associate probability difference between model prediction and existing empirical data was found. The ACT-R cognitive architecture could be used to model the effect of positive affect on the unusual association by decreasing (manipulating) the weight of the dissimilarity. This study is useful in conducting model-based evaluation of the effects of positive affect in complex tasks involving memory, such as creative problem solving.

A Study of Correlation Analysis between Increase / Decrease Rate of Tweets Before and After Opening and a Box Office Gross (개봉 전후 트윗 개수의 증감률과 영화 매출간의 상관관계)

  • Park, Ji-Yun;Yoo, In-Hyeok;Kang, Sung-Woo
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.4
    • /
    • pp.169-182
    • /
    • 2017
  • Predicting a box office gross in the film industry is an important goal. Many works have analyzed the elements of a film making. Previous studies have suggested several methods for predicting box office such as a model for distinguishing people's reactions by using a sentiment analysis, a study on the period of influence of word-of-mouth effect through SNS. These works discover that a word of mouth (WOM) effect through SNS influences customers' choice of movies. Therefore, this study analyzes correlations between a box office gross and a ratio of people reaction to a certain movie by extracting their feedback on the film from before and after of the film opening. In this work, people's reactions to the movie are categorized into positive, neutral, and negative opinions by employing sentiment analysis. In order to proceed the research analyses in this work, North American tweets are collected between March 2011 and August 2012. There is no correlation for each analysis that has been conducted in this work, hereby rate of tweets before and after opening of movies does not have relationship between a box office gross.

Design of a Korean Speech Recognition Platform (한국어 음성인식 플랫폼의 설계)

  • Kwon Oh-Wook;Kim Hoi-Rin;Yoo Changdong;Kim Bong-Wan;Lee Yong-Ju
    • MALSORI
    • /
    • no.51
    • /
    • pp.151-165
    • /
    • 2004
  • For educational and research purposes, a Korean speech recognition platform is designed. It is based on an object-oriented architecture and can be easily modified so that researchers can readily evaluate the performance of a recognition algorithm of interest. This platform will save development time for many who are interested in speech recognition. The platform includes the following modules: Noise reduction, end-point detection, met-frequency cepstral coefficient (MFCC) and perceptually linear prediction (PLP)-based feature extraction, hidden Markov model (HMM)-based acoustic modeling, n-gram language modeling, n-best search, and Korean language processing. The decoder of the platform can handle both lexical search trees for large vocabulary speech recognition and finite-state networks for small-to-medium vocabulary speech recognition. It performs word-dependent n-best search algorithm with a bigram language model in the first forward search stage and then extracts a word lattice and restores each lattice path with a trigram language model in the second stage.

  • PDF