• Title/Summary/Keyword: Word to Vector

Search Result 216, Processing Time 0.032 seconds

Development of a Real-time Voice Recognition Dialing System; (실시간 음성인식 다이얼링 시스템 개발)

  • 이세웅;최승호;이미숙;김흥국;오광철;김기철;이황수
    • Information and Communications Magazine
    • /
    • v.10 no.10
    • /
    • pp.22-29
    • /
    • 1993
  • This paper describes development of a real-time voice recognition dialing system which can recognize around one hundred word vocabularies in speaker independent mode. The voice recognition algorithm is implemented on a DSP board with a telephone interface plugged in an IBM PC AT/486. In the DSP board, procedures for feature extraction, vector quantization(VQ), and end-point detection are performed simultaneously in every 10msec frame interval to satisfy real-time constraints after the word starting point detection. In addition, we optimize the VQ codebook size and the end-point detection procedure to reduce recognition time and memory requirement. The demonstration system is being displayed in MOBILAB of Korea Mobile Telecom at the Taejon EXPO '93.

  • PDF

Text Classification on Social Network Platforms Based on Deep Learning Models

  • YA, Chen;Tan, Juan;Hoekyung, Jung
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.1
    • /
    • pp.9-16
    • /
    • 2023
  • The natural language on social network platforms has a certain front-to-back dependency in structure, and the direct conversion of Chinese text into a vector makes the dimensionality very high, thereby resulting in the low accuracy of existing text classification methods. To this end, this study establishes a deep learning model that combines a big data ultra-deep convolutional neural network (UDCNN) and long short-term memory network (LSTM). The deep structure of UDCNN is used to extract the features of text vector classification. The LSTM stores historical information to extract the context dependency of long texts, and word embedding is introduced to convert the text into low-dimensional vectors. Experiments are conducted on the social network platforms Sogou corpus and the University HowNet Chinese corpus. The research results show that compared with CNN + rand, LSTM, and other models, the neural network deep learning hybrid model can effectively improve the accuracy of text classification.

Noisy Speech Recognition Based on Noise-Adapted HMMs Using Speech Feature Compensation

  • Chung, Yong-Joo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.2
    • /
    • pp.37-41
    • /
    • 2014
  • The vector Taylor series (VTS) based method usually employs clean speech Hidden Markov Models (HMMs) when compensating speech feature vectors or adapting the parameters of trained HMMs. It is well-known that noisy speech HMMs trained by the Multi-condition TRaining (MTR) and the Multi-Model-based Speech Recognition framework (MMSR) method perform better than the clean speech HMM in noisy speech recognition. In this paper, we propose a method to use the noise-adapted HMMs in the VTS-based speech feature compensation method. We derived a novel mathematical relation between the train and the test noisy speech feature vector in the log-spectrum domain and the VTS is used to estimate the statistics of the test noisy speech. An iterative EM algorithm is used to estimate train noisy speech from the test noisy speech along with noise parameters. The proposed method was applied to the noise-adapted HMMs trained by the MTR and MMSR and could reduce the relative word error rate significantly in the noisy speech recognition experiments on the Aurora 2 database.

A Text Similarity Measurement Method Based on Singular Value Decomposition and Semantic Relevance

  • Li, Xu;Yao, Chunlong;Fan, Fenglong;Yu, Xiaoqiang
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.863-875
    • /
    • 2017
  • The traditional text similarity measurement methods based on word frequency vector ignore the semantic relationships between words, which has become the obstacle to text similarity calculation, together with the high-dimensionality and sparsity of document vector. To address the problems, the improved singular value decomposition is used to reduce dimensionality and remove noises of the text representation model. The optimal number of singular values is analyzed and the semantic relevance between words can be calculated in constructed semantic space. An inverted index construction algorithm and the similarity definitions between vectors are proposed to calculate the similarity between two documents on the semantic level. The experimental results on benchmark corpus demonstrate that the proposed method promotes the evaluation metrics of F-measure.

Translation Pre-processing Technique for Improving Analysis Performance of Korean News (한국어 뉴스 분석 성능 향상을 위한 번역 전처리 기법)

  • Lee, Ji-Min;Jeong, Da-Woon;Gu, Yeong-Hyeon;Yoo, Seong-Joon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.619-623
    • /
    • 2020
  • 한국어는 교착어로 1개 이상의 형태소가 단어를 이루고 있기 때문에 텍스트 분석 시 형태소를 분리하는 작업이 필요하다. 자연어를 처리하는 대부분의 알고리즘은 영미권에서 만들어졌고 영어는 굴절어로 특정 경우를 제외하고 일반적으로 하나의 형태소가 단어를 구성하는 구조이다. 그리고 영문은 주로 띄어쓰기 위주로 토큰화가 진행되기 때문에 텍스트 분석이 한국어에 비해 복잡함이 떨어지는 편이다. 이러한 이유들로 인해 한국어 텍스트 분석은 영문 텍스트 분석에 비해 한계점이 있다고 알려져 있다. 한국어 텍스트 분석의 성능 향상을 위해 본 논문에서는 번역 전처리 기법을 제안한다. 번역 전처리 기법이란 원본인 한국어 텍스트를 영문으로 번역하고 전처리를 거친 뒤 분석된 결과를 재번역하는 것이다. 본 논문에서는 한국어 뉴스 기사 데이터와 번역 전처리 기법이 적용된 영문 뉴스 텍스트 데이터를 사용했다. 그리고 주제어 역할을 하는 키워드를 단어 간의 유사도를 계산하는 알고리즘인 Word2Vec(Word to Vector)을 통해 유사 단어를 추출했다. 이렇게 도출된 유사 단어를 텍스트 분석 전문가 대상으로 성능 비교 투표를 진행했을 때, 한국어 뉴스보다 번역 전처리 기법이 적용된 영문 뉴스가 약 3배의 득표 차이로 의미있는 결과를 도출했다.

  • PDF

Construction of Indoor and Outdoor Spatial Information Integration Service System based on Vector Model

  • Kim, Jun Hyun;Kwon, Kee Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.3
    • /
    • pp.185-196
    • /
    • 2018
  • In order to overcome the problem that outdoor and indoor spatial information service are separately utilized, an integration service system of spatial information that is linked from outdoor to indoor has been implemented. As a result of the study, "0001.xml" corresponding to the file index key value, which is the service connection information in the building information of the destination, was extracted from the prototype verification of the system, the search word of 'Kim AB' was transmitted to the indoor map server and converted from the outdoor map service to the indoor map service through confirmation of the navigation service connected information, using service linkage information and search words of the indoor map service was confirmed that the route was displayed from the entrance of the building to the destination in the building through the linkage search DB (Database) table and the search query. Therefore, through this study was examined the possibility of linking indoor and outdoor DB through vector spatial information integration service system. The indoor map and the map engine were implemented based on the same vector map format as the outdoor map engine, it was confirmed that the connectivity of the map engine can be applied.

Speaker Adaptation Using i-Vector Based Clustering

  • Kim, Minsoo;Jang, Gil-Jin;Kim, Ji-Hwan;Lee, Minho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.2785-2799
    • /
    • 2020
  • We propose a novel speaker adaptation method using acoustic model clustering. The similarity of different speakers is defined by the cosine distance between their i-vectors (intermediate vectors), and various efficient clustering algorithms are applied to obtain a number of speaker subsets with different characteristics. The speaker-independent model is then retrained with the training data of the individual speaker subsets grouped by the clustering results, and an unknown speech is recognized by the retrained model of the closest cluster. The proposed method is applied to a large-scale speech recognition system implemented by a hybrid hidden Markov model and deep neural network framework. An experiment was conducted to evaluate the word error rates using Resource Management database. When the proposed speaker adaptation method using i-vector based clustering was applied, the performance, as compared to that of the conventional speaker-independent speech recognition model, was improved relatively by as much as 12.2% for the conventional fully neural network, and by as much as 10.5% for the bidirectional long short-term memory.

The Method of the Evaluation of Verbal Lexical-Semantic Network Using the Automatic Word Clustering System (단어클러스터링 시스템을 이용한 어휘의미망의 활용평가 방안)

  • Kim, Hae-Gyung;Song, Mi-Young
    • Korean Journal of Oriental Medicine
    • /
    • v.12 no.3 s.18
    • /
    • pp.1-15
    • /
    • 2006
  • For the recent several years, there has been much interest in lexical semantic network. However, it seems to be very difficult to evaluate the effectiveness and correctness of it and invent the methods for applying it into various problem domains. In order to offer the fundamental ideas about how to evaluate and utilize lexical semantic networks, we developed two automatic word clustering systems, which are called system A and system B respectively. 68,455,856 words were used to learn both systems. We compared the clustering results of system A to those of system B which is extended by the lexical-semantic network. The system B is extended by reconstructing the feature vectors which are used the elements of the lexical-semantic network of 3,656 '-ha' verbs. The target data is the 'multilingual Word Net-CoreNet'.When we compared the accuracy of the system A and system B, we found that system B showed the accuracy of 46.6% which is better than that of system A, 45.3%.

  • PDF

Research on Designing Korean Emotional Dictionary using Intelligent Natural Language Crawling System in SNS (SNS대상의 지능형 자연어 수집, 처리 시스템 구현을 통한 한국형 감성사전 구축에 관한 연구)

  • Lee, Jong-Hwa
    • The Journal of Information Systems
    • /
    • v.29 no.3
    • /
    • pp.237-251
    • /
    • 2020
  • Purpose The research was studied the hierarchical Hangul emotion index by organizing all the emotions which SNS users are thinking. As a preliminary study by the researcher, the English-based Plutchick (1980)'s emotional standard was reinterpreted in Korean, and a hashtag with implicit meaning on SNS was studied. To build a multidimensional emotion dictionary and classify three-dimensional emotions, an emotion seed was selected for the composition of seven emotion sets, and an emotion word dictionary was constructed by collecting SNS hashtags derived from each emotion seed. We also want to explore the priority of each Hangul emotion index. Design/methodology/approach In the process of transforming the matrix through the vector process of words constituting the sentence, weights were extracted using TF-IDF (Term Frequency Inverse Document Frequency), and the dimension reduction technique of the matrix in the emotion set was NMF (Nonnegative Matrix Factorization) algorithm. The emotional dimension was solved by using the characteristic value of the emotional word. The cosine distance algorithm was used to measure the distance between vectors by measuring the similarity of emotion words in the emotion set. Findings Customer needs analysis is a force to read changes in emotions, and Korean emotion word research is the customer's needs. In addition, the ranking of the emotion words within the emotion set will be a special criterion for reading the depth of the emotion. The sentiment index study of this research believes that by providing companies with effective information for emotional marketing, new business opportunities will be expanded and valued. In addition, if the emotion dictionary is eventually connected to the emotional DNA of the product, it will be possible to define the "emotional DNA", which is a set of emotions that the product should have.

Keyword Spotting on Hangul Document Images Using Character Feature Models (문자 별 특징 모델을 이용한 한글 문서 영상에서 키워드 검색)

  • Park, Sang-Cheol;Kim, Soo-Hyung;Choi, Deok-Jai
    • The KIPS Transactions:PartB
    • /
    • v.12B no.5 s.101
    • /
    • pp.521-526
    • /
    • 2005
  • In this Paper, we propose a keyword spotting system as an alternative to searching system for poor quality Korean document images and compare the Proposed system with an OCR-based document retrieval system. The system is composed of character segmentation, feature extraction for the query keyword, and word-to-word matching. In the character segmentation step, we propose an effective method to remove the connectivity between adjacent characters and a character segmentation method by making the variance of character widths minimum. In the query creation step, feature vector for the query is constructed by a combination of a character model by typeface. In the matching step, word-to-word matching is applied base on a character-to-character matching. We demonstrated that the proposed keyword spotting system is more efficient than the OCR-based one to search a keyword on the Korean document images, especially when the quality of documents is quite poor and point size is small.