• 제목/요약/키워드: Word Tree

검색결과 95건 처리시간 0.03초

한국어 연결숫자인식을 위한 숫자 모델링에 관한 연구 (A Study on Digit Modeling for Korean Connected Digit Recognition)

  • 김기성
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
    • /
    • pp.293-297
    • /
    • 1998
  • 전화망에서의 연결 숫자 인식 시스템의 개발에 대한 내용을 다루며, 이 시스템에서 다양한 숫자 모델링 방법들을 구현하고 비겨하였다. Word 모델의 경우 문맥독립 whole-word 모델을 구현하였으며, sub-word 모델로는 triphone 모델과 불파음화 자음을 모음에 포함시킨 modified triphone 모델을 구현하였다. 그리고 tree-based clustering 방법을 sub-word 모델과 문맥종속 whole-word 모델에 적용하였다. 이와 같은 숫자모델들에 대해 연속 HMM을 이용하여 화자독립 연결숫자 인식 실험을 수행한 결과, 문맥종속 단어 모델이 문맥독립 단어 모델보다 우수한 성능을 나타냈으며, triphone 모델과 modified triphone 모델은 유사한 성능을 나타냈다. 특히 tree-based clustering 방법을 적용한 문맥종속 단어 모델이 4연 숫자열에 대해 99.8%의 단어 dsltlr률 및 99.1%의 숫자열 인식률로서 가장 우수한 성능을 나타내었다.

  • PDF

한국어 음성인식 플랫폼(ECHOS)의 개선 및 평가 (Improvement and Evaluation of the Korean Large Vocabulary Continuous Speech Recognition Platform (ECHOS))

  • 권석봉;윤성락;장규철;김용래;김봉완;김회린;유창동;이용주;권오욱
    • 대한음성학회지:말소리
    • /
    • 제59호
    • /
    • pp.53-68
    • /
    • 2006
  • We report the evaluation results of the Korean speech recognition platform called ECHOS. The platform has an object-oriented and reusable architecture so that researchers can easily evaluate their own algorithms. The platform has all intrinsic modules to build a large vocabulary speech recognizer: Noise reduction, end-point detection, feature extraction, hidden Markov model (HMM)-based acoustic modeling, cross-word modeling, n-gram language modeling, n-best search, word graph generation, and Korean-specific language processing. The platform supports both lexical search trees and finite-state networks. It performs word-dependent n-best search with bigram in the forward search stage, and rescores the lattice with trigram in the backward stage. In an 8000-word continuous speech recognition task, the platform with a lexical tree increases 40% of word errors but decreases 50% of recognition time compared to the HTK platform with flat lexicon. ECHOS reduces 40% of recognition errors through incorporation of cross-word modeling. With the number of Gaussian mixtures increasing to 16, it yields word accuracy comparable to the previous lexical tree-based platform, Julius.

  • PDF

Word2vec을 이용한 오피니언 마이닝 성과분석 연구 (Performance Analysis of Opinion Mining using Word2vec)

  • 어균선;이건창
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2018년도 춘계 종합학술대회 논문집
    • /
    • pp.7-8
    • /
    • 2018
  • 본 연구에서는 Word2vec을 머신러닝 분류기를 이용해 효율적인 오피니언 마이닝 방법을 제안한다. 본 연구의 목적을 위해 BOW(Bag-of-Words) 방법과 Word2vec방법을 이용해 속성 셋을 구성했다. 구성된 속성 셋은 Decision tree, Logistic regression, Support vector machine, Random forest를 이용해 오피니언 마이닝을 수행했다. 연구 결과, Word2vec 방법과 RF분류기가 가장 높은 정확도를 나타냈다. 그리고 Word2vec 방법이 BOW방법 보다 각 분류기에서 높은 성능을 나타냈다.

  • PDF

Word2vec과 앙상블 분류기를 사용한 효율적 한국어 감성 분류 방안 (Effective Korean sentiment classification method using word2vec and ensemble classifier)

  • 박성수;이건창
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권1호
    • /
    • pp.133-140
    • /
    • 2018
  • 감성 분석에서 정확한 감성 분류는 중요한 연구 주제이다. 본 연구는 최근 많은 연구가 이루어지는 word2vec과 앙상블 방법을 이용하여 효과적으로 한국어 리뷰를 감성 분류하는 방법을 제시한다. 연구는 20 만 개의 한국 영화 리뷰 텍스트에 대해, 품사 기반 BOW 자질과 word2vec를 사용한 자질을 생성하고, 두 개의 자질 표현을 결합한 통합 자질을 생성했다. 감성 분류를 위해 Logistic Regression, Decision Tree, Naive Bayes, Support Vector Machine의 단일 분류기와 Adaptive Boost, Bagging, Gradient Boosting, Random Forest의 앙상블 분류기를 사용하였다. 연구 결과로 형용사와 부사를 포함한 BOW자질과 word2vec자질로 구성된 통합 자질 표현이 가장 높은 감성 분류 정확도를 보였다. 실증결과, 단일 분류기인 SVM이 가장 높은 성능을 나타내었지만, 앙상블 분류기는 단일 분류기와 비슷하거나 약간 낮은 성능을 보였다.

시맨틱 구문 트리 커널을 이용한 생명공학 분야 전문용어간 관계 식별 및 분류 연구 (A Study on the Identification and Classification of Relation Between Biotechnology Terms Using Semantic Parse Tree Kernel)

  • 최성필;정창후;전홍우;조현양
    • 한국문헌정보학회지
    • /
    • 제45권2호
    • /
    • pp.251-275
    • /
    • 2011
  • 본 논문에서는 단백질 간 상호작용 자동 추출을 위해서 기존에 연구되어 높은 성능을 나타낸 구문 트리 커널을 확장한 시맨틱 구문 트리 커널을 제안한다. 기존 구문 트리 커널의 문제점은 구문 트리의 단말 노드를 구성하는 개별 어휘에 대한 단순 외형적 비교로 인해, 실제 의미적으로는 유사한 두 구문 트리의 커널 값이 상대적으로 낮아지는 현상이며 결국 상호작용 자동 추출의 전체 성능에 악영향을 줄 수 있다는 점이다. 본 논문에서는 두 구문 트리의 구문적 유사도(syntactic similarity)와 어휘 의미적 유사도(lexical semantic similarity)를 동시에 효과적으로 계산하여 이를 결합하는 새로운 커널을 고안하였다. 어휘 의미적 유사도 계산을 위해서 문맥 및 워드넷 기반의 어휘 중의성 해소 시스템과 이 시스템의 출력으로 도출되는 어휘 개념(WordNet synset)의 추상화를 통한 기존 커널의 확장을 시도하였다. 실험에서는 단백질 간 상호작용 추출(PPII, PPIC) 성능의 심층적 최적화를 위해서 기존의 SVM에서 지원되던 정규화 매개변수 외에 구문 트리 커널의 소멸인자와 시맨틱 구문 트리 커널의 어휘 추상화 인자를 새롭게 도입하였다. 이를 통해 구문 트리 커널을 적용함에 있어서 소멸인자 역할의 중요성을 확인할 수 있었고, 시맨틱 구문 트리 커널이 기존 시스템의 성능향상에 도움을 줄 수 있음을 실험적으로 보여주었다. 특히 단백질 간 상호작용식별 문제보다도 비교적 난이도가 높은 상호작용 분류에 더욱 효과적임을 알 수 있었다.

트리 구조 어휘 사전을 이용한 연결 숫자음 인식 시스템의 구현 (Implementation of Connected-Digit Recognition System Using Tree Structured Lexicon Model)

  • 윤영선;채의근
    • 대한음성학회지:말소리
    • /
    • 제50호
    • /
    • pp.123-137
    • /
    • 2004
  • In this paper, we consider the implementation of connected digit recognition system using tree structured lexicon model. To implement efficiently the fixed or variable length digit recognition system, finite state network (FSN) is required. We merge the word network algorithm that implements the FSN with lexical tree search algorithm that is used for general speech recognition system for fast search and large vocabulary systems. To find the efficient modeling of digit recognition system, we investigate some performance changes when the lexical tree search is applied.

  • PDF

Comparing Machine Learning Classifiers for Movie WOM Opinion Mining

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권8호
    • /
    • pp.3169-3181
    • /
    • 2015
  • Nowadays, online word-of-mouth has become a powerful influencer to marketing and sales in business. Opinion mining and sentiment analysis is frequently adopted at market research and business analytics field for analyzing word-of-mouth content. However, there still remain several challengeable areas for 1) sentiment analysis aiming for Korean word-of-mouth content in film market, 2) availability of machine learning models only using linguistic features, 3) effect of the size of the feature set. This study took a sample of 10,000 movie reviews which had posted extremely negative/positive rating in a movie portal site, and conducted sentiment analysis with four machine learning algorithms: naïve Bayesian, decision tree, neural network, and support vector machines. We found neural network and support vector machine produced better accuracy than naïve Bayesian and decision tree on every size of the feature set. Besides, the performance of them was boosting with increasing of the feature set size.

Issue-Tree기법과 QFD를 이용한 자율주행자동차 교통안전정책과제 분석 (Issue-Tree and QFD Analysis of Transportation Safety Policy with Autonomous Vehicle)

  • 남두희;이상수;김남선
    • 한국ITS학회 논문지
    • /
    • 제15권4호
    • /
    • pp.26-32
    • /
    • 2016
  • 자율주행자동차는 운전자의 조작 없이 목표지점까지 스스로 주행환경을 인식하여 운행하는 최첨단 자동차를 말하며 위성항법장치, 센서 등으로 위치를 측정하고 주행환경을 인식, 연산장치로 가감속 차선변경 등 자율주행을 제어한다. 최근, 자동차 산업은 기존 기계공학과 정보통신, 센서, 위성항법 등 첨단기술이 총 집약된 자율주행 자동차로 빠르게 진화중이다. 교통안전 정책과제 분석은 Issue-Tree를 활용하여 분석하였다. Issue-Tree 방법론은 복잡한 문제를 세분화하여 구체화하고, 체계적으로 접근하는 문제해결 도구로 자율주행자동차 도입에 따른 교통안전 관련 Issue의 해결을 위한 정책과제를 도출하기 위해 사용된다. 교통안전 정책과제를 분석하기 위해는 우선 미래 사회 및 교통여건 변화로부터 Key Word를 도출하고, 이와 연계되는 국내외 도로교통 정책/계획을 확인하여 국내외 도로 교통 정책목표 Key Word를 도출하였다. 도출된 정책목표 Key Word로부터 핵심적인 Issue를 도출하였는데, 이때 Issue-Tree 방법을 통해 체계화하였다.

Optimal Decision Tree를 이용한 Unseen Model 추정방법 (Unseen Model Prediction using an Optimal Decision Tree)

  • 김성탁;김회린
    • 대한음성학회지:말소리
    • /
    • 제45호
    • /
    • pp.117-126
    • /
    • 2003
  • Decision tree-based state tying has been proposed in recent years as the most popular approach for clustering the states of context-dependent hidden Markov model-based speech recognition. The aims of state tying is to reduce the number of free parameters and predict state probability distributions of unseen models. But, when doing state tying, the size of a decision tree is very important for word independent recognition. In this paper, we try to construct optimized decision tree based on the average of feature vectors in state pool and the number of seen modes. We observed that the proposed optimal decision tree is effective in predicting the state probability distribution of unseen models.

  • PDF

구문의미 분석을 활용한 복합 문단구분 시스템에 대한 연구 (Research on the Hybrid Paragraph Detection System Using Syntactic-Semantic Analysis)

  • 강원석
    • 한국멀티미디어학회논문지
    • /
    • 제24권1호
    • /
    • pp.106-116
    • /
    • 2021
  • To increase the quality of the system in the subjective-type question grading and document classification, we need the paragraph detection. But it is not easy because it is accompanied by semantic analysis. Many researches on the paragraph detection solve the detection problem using the word based clustering method. However, the word based method can not use the order and dependency relation between words. This paper suggests the paragraph detection system using syntactic-semantic relation between words with the Korean syntactic-semantic analysis. This system is the hybrid system of word based, concept based, and syntactic-semantic tree based detection. The experiment result of the system shows it has the better result than the word based system. This system will be utilized in Korean subjective question grading and document classification.