International Journal of Knowledge Content Development & Technology
/
제13권2호
/
pp.23-35
/
2023
Word templates exist for select journals, and their primary objective is to facilitate submissions to those journals, thereby optimizing editors' and publishers' time and resources by ensuring that the desired style (e.g., of sections, references, etc.) is followed. However, if multiple unrelated authors use the exact same template, a risk exists that some text might be erroneously cloned if template-based papers are not carefully screened by authors, journal editors or proof copyeditors. Elsevier Procedia® was used as an example. Select cloned text, presumably derived from MS Word templates used for submissions to Elsevier Procedia® journals, was assessed using Science Direct. Typically, in academic publishing, identical text is screened using text similarity software during the submission process, and if detected, may be flagged as plagiarism. After searching for "heading should be left justified, bold, with the first letter capitalized", 44 Elsevier Procedia® papers were found to be positive for vestigial template text. The integrity of the information in these papers has been compromised, so these errors should be corrected with an erratum, or in the case of extensive errors and vast tracts (e.g., pages long) of template text, papers should be retracted and republished.
본 논문에서는 SI산업 시장에서의 효율적인 비즈니스 룰 작성을 위한 시스템을 제시하였다. 단순히 워드나 PPT를 이용하여 룰을 작성하는 것 보다 개발자와 현업 직원간의 의사소통을 더욱 원활히 진행할 수 있게 해 주는 시스템을 구현하였다. 본 논문에서 사용된 시스템은 템플릿을 제시하여 이 템플릿에 맞는 문장을 작성하게 하는 것을 목표로 하였다. 비즈니스 룰의 주제별로 문장을 작성할 수 있는 템플릿을 제시하였고 이 템플릿들에 따라 문장을 더욱 명확히 입력할 수 있도록 하는 입력 툴을 같이 제시하였다.
한국음향학회 1994년도 FIFTH WESTERN PACIFIC REGIONAL ACOUSTICS CONFERENCE SEOUL KOREA
/
pp.1039-1045
/
1994
The speech recognition systems using VQ have usually the problem decreasing recognition rate, MSVQ assigning the dissimilar vectors to a segment. In this paper, applying One-stage DMS/DP algorithm to the recognition experiments, we can solve these problems to what degree. Recognition experiment is peformed for Korean DDD area names with DMS model of 20 sections and word unit template. We carried out the experiment in speaker dependent and speaker independent, and get a recognition rates of 97.7% and 81.7% respectively.
In a template-matchig-based speech recognition syste, excessive weight given to perceptually unimportant spectral variations is undesirable for discriminating among acoustically similar words. By introducing a simple threshold-type nonlinearity applied to the distance metric, the word recognition performance can be improved for a vocabulary with similar sounding words, without modifying the system structure.
최근 다양한 거대 언어모델(Large Language Model)들이 개발되면서 프롬프트 엔지니어링의 대한 다양한 연구가 진행되고 있다. 본 논문에서는 퓨삿 학습 환경에서 개체명 인식의 성능을 높이기 위해서 제안된 템플릿이 필요 없는 프롬프트 튜닝(Template-free Prompt Tuning) 방법을 이용하고, 이 방법에서 사용된 라벨 단어 집합 생성 방법에 Maximal Marginal Relevance 알고리즘을 적용하여 해당 개체명에 대해 보다 다양하고 구체적인 라벨 단어 집합을 생성하도록 개선하였다. 실험 결과, 'LOC' 타입을 제외한 나머지 개체명 타입에서 'PER' 타입은 0.60%p, 'ORG' 타입은 4.98%p, 'MISC' 타입은 1.38%p 성능이 향상되었고, 전체 개체명 인식 성능은 1.26%p 향상되었다. 이를 통해 본 논문에서 제안한 라벨 단어 집합 생성 기법이 개체명 인식 성능 향상에 도움이 됨을 보였다.
We will introduce speech/speaker recognition algorithm for the isolated word. In general case of speaker verification, Gaussian Mixture Model (GMM) is used to model the feature vectors of reference speech signals. On the other hand, Dynamic Time Warping (DTW) based template matching technique was proposed for the isolated word recognition in several years ago. We combine these two different concepts in a single method and then implement in a real time speaker/speech recognition system. Using our proposed method, it is guaranteed that a small number of reference speeches (5 or 6 times training) are enough to make reference model to satisfy 90% of recognition performance.
Journal of information and communication convergence engineering
/
제22권1호
/
pp.80-87
/
2024
The Manchu language holds historical significance, but a complete dataset of Manchu script letters for training optical character recognition machine-learning models is currently unavailable. Therefore, this paper describes the process of creating a robust dataset of extracted Manchu script letters. Rather than performing automatic letter segmentation based on whitespace or the thickness of the central word stem, an image of the Manchu script was manually inspected, and one copy of the desired letter was selected as a region of interest. This selected region of interest was used as a template to match all other occurrences of the same letter within the Manchu script image. Although the dataset in this study contained only 4,000 images of five Manchu script letters, these letters were collected from twenty-eight writing styles. A full dataset of Manchu letters is expected to be obtained through this process. The collected dataset was normalized and trained using a simple convolutional neural network to verify its effectiveness.
본 논문은 화자독립 고립단어 인식에 있어서 LP모델의 문제점과 그 해결 방안으로서 cepstrum영역에 있어서 lifter를 이용한 해결에 대해서 고찰하였다. 한편, 각 인식 단어의 기준 패턴을 구하기 위한 방법으로서 집단화의 방법에 대해 논하였다. 집단화의 방법으로서는 UWA방법과 K-iteration방법을 변형시킨 KMA 방법을 제시 비교하였다. 인식실험결과 정현파 lifter와 KMA의 집단화 방법을 사용하였을 때 $95\%$의 최고 인식률을 보였다.
이 연구에서는 복수의 신문기사를 자동으로 요약하기 위해 문장의 의미범주를 활용한 템플리트 기반 요약 기법을 제시하였다. 먼저 학습과정에서 사건/사고 관련 신문기사의 요약문에 포함할 핵심 정보의 의미범주를 식별한 다음 템플리트를 구성하는 각 슬롯의 단서어를 선정한다. 자동요약 과정에서는 입력되는 복수의 뉴스기사들을 사건/사고 별로 범주화한 후 각 기사로부터 주요 문장을 추출하여 템플리트의 각 슬롯을 채운다. 마지막으로 문장을 단문으로 분리하여 템플리트의 내용을 수정한 후 이로부터 요약문을 작성한다. 자동 생성된 요약문을 평가한 결과 요약 정확률과 요약 재현율은 각각 0.541과 0.581로 나타났고, 요약문장 중복률은 0.116으로 나타났다.
본 논문에서는 단어를 발음하는 방법 이 각각 다른 화자들의 변이성을 잘 흡수하도록 복수개의 통계적인 모델들을 구성하기 위하여 HMM을 기본으로 하는 집단화 방법을 제시한다. 또한 개발된 방법으로부터 얻어진 HMM집단화된 모델들이 불특정화자 고립단어 인식에 응용된다. HMM 집단화 방법은 학습용 데이타로부터 어떤 경계치 보다 낮은 유사도를 갖는 관측열들을 분리하여 새로운 집단을 만들고 이 집단내에 있는 관측열들을 이용하여 새로운 모델들을 학습시키는 방법이다. 집단화 과정은 반복되는데 최고의 유사도를 갖는 모델의 집단에 관측열들을 재분배하고 집단내 관측열들이 변화하면 새로운 모델을 재 추정하여 기존의 모델을 대신한다. 그러므로 이 집단화 방법은 집단화 과정과 파라미터 추정이 일체화되어 기존의 패턴에 의한 집단화 방법보다 더욱 효율적이 된다. 실험결과 HMM에 의한 집단화 방법이 기존의 패턴에 의한 집단화 방법보다. 고립 숫자음 인식에 있어서 $1.43\%$의 인식률을 향상시킬 수 있었으며 단일 모델의 사용보다는 $2.08\%$의 인식률이 향상되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.