빅데이터 분석에서 텍스트 데이터는 대부분 비정형이고 대용량으로 분석 기법이 정립되지 않아 분석에 어려움이 많았다. 따라서 텍스트 데이터 분석 기법의 하나인 빅데이터 워드클라우드 기법의 실무 적용시 문제점과 유용성 검증을 통한 상용화 가능성을 위해 본 연구를 수행하였다. 본 논문에서는 R 프로그램 워드클라우드 기법을 이용하여 "대통령 UN연설문"을 시각화 분석을 하고 이 기법의 한계와 문제점을 도출한다. 그리고 이를 해결하기 위한 개선된 모델을 제안하여 워드클라우드 기법의 실무 적용에 대한 효율적인 방안을 제시한다.
비정형 텍스트 데이터의 빅데이터 시각화 분석에서 원시 데이터는 대부분 대용량이고 비정형으로 정제하지 않고 분석기법을 적용할 수 없는 상태이다. 따라서 수집된 원시 데이터는 1차 휴리스틱 정제과정을 통해서 불필요한 데이터들을 제거하고 2차 머시인 정제과정을 통해서 불용어를 제거한다. 그리고 어휘의 빈도수를 계산하여 워드클라우드 기법으로 시각화하고 핵심 이슈들을 추출하여 정보화하고 그 결과를 분석한다. 본 연구에서는 파이썬 워드클라우드에서 외부 불용어 Set(DB)를 사용한 새로운 불용어 정제기법을 제안하고 실무 사례분석을 통하여 이 기법의 문제점과 효용성을 도출한다. 그리고 이 검증 결과를 통해 제안된 정제기법을 적용한 워드클라우드 분석의 실무적용에 대한 효용성을 제시한다.
International Journal of Advanced Culture Technology
/
제12권2호
/
pp.221-226
/
2024
This study used text mining, a big data analysis technique, to explore XR trends in South Korea. For this research, I utilized a big data platform called BigKinds. I collected data focusing on the keyword 'XR', spanning approximately 14 years from 2010 to 2024. The gathered data underwent a cleansing process and was analyzed in three ways: keyword trend analysis, relational analysis, and word cloud. The analysis identified the emergence and most active discussion periods of XR, with XR devices and manufacturers emerging as key keywords.
인공지능과 빅데이터 분석을 위해 웹 스크래핑으로 수집된 대부분의 텍스트 데이터들은 일반적으로 대용량이고 비정형이기 때문에 빅데이터 분석을 위해서는 정제과정이 요구된다. 그 과정은 휴리스틱 전처리 정제단계와 후처리 머시인 정제단계를 통해서 분석이 가능한 정형 데이터가 된다. 따라서 본 연구에서는 후처리 머시인 정제과정에서 한국어 딕셔너리와 불용어 딕셔너리를 이용하여 워드크라우드 분석을 위한 빈도분석을 위해 어휘들을 추출하게 되는데 이 과정에서 제거되지 않은 불용어를 효율적으로 제거하기 위한 "사용자 정의 불용어 시소러스" 적용에 대한 방법론을 제안하고 R의 워드클라우드 기법으로 기존의 "불용어 딕셔너리" 방법의 문제점을 보완하기 위해 제안된 "사용자 정의 불용어 시소러스" 기법을 이용한 사례분석을 통해서 제안된 정제방법의 장단점을 비교 검증하여 제시하고 제안된 방법론의 실무적용에 대한 효용성을 제안한다.
본 논문은 텍스트 마이닝 기법으로 명사의 빈도수를 조사하여 워드클라우드를 나타내는 기존의 방법을 개선하여 지능적 워드클라우드를 구현하는 방법을 제안한다. 텍스트 마이닝 시에 명사 단어를 추출하는 사전에 누락된 신조어 등의 단어를 효과적으로 추가하고, 동사 등 다른 품사위주의 워드클라우드를 시각적으로 보여주는 방법을 제안한다. 실험에서 기존 명사의 빈도수 추출에는 KoNLP 패키지를 사용하였고, 지원되지 않는 신조어 80개를 추가하였고 빈도수를 수동으로 조사하여 추가하였다.
악성코드는 하루 평균 수만 건 이상이 발생하고 있으며, 신종 악성코드의 수는 해마다 큰 폭으로 증가하고 있다. 악성코드를 탐지하는 방법은 시그니쳐 기반, API 흐름, 문자열 등을 이용한 다양한 기법이 존재하지만 대부분의 탐지 기법들은 악성코드를 우회하는 공격 기법으로 인해 신종 악성코드를 탐지하는데 한계가 있다. 따라서 신종 악성코드를 효율적으로 탐지하기 위한 연구가 많이 진행되고 있다. 그중 시각화 기법을 통한 연구가 최근 활발하게 이루어지고 있으며, 악성코드를 직관적으로 파악할 수 있으므로 대량의 악성코드를 효율적으로 탐지하고 분석할 수 있다는 장점이 있다. 본 논문에서는 악성코드와 정상파일에서 Native API 함수를 추출하고 해당 Native API가 악성코드에서 발생하는 확률에 따라서 F-measure 실험을 통해 가중치의 합을 결정하고, 최종적으로 가중치를 이용하여 워드 클라우드에서 텍스트의 크기로 표현되는 기법을 제안한다. 그리고 실험을 통해 악성코드와 정상파일에서 사용하는 Native API의 가중치에 따라서 악성코드를 판단할 수 있음을 보인다. 제안하는 방식은 워드 클라우드를 이용하여 Native API를 시각적으로 표현함으로써 파일의 악성 유무를 판단하고, 직관적으로 악성코드의 행위를 분석할 수 있다는 장점이 있다.
Journal of Information Science Theory and Practice
/
제2권1호
/
pp.22-34
/
2014
This paper analyzes India's contribution to world tribology research during the period 2001-2012 based on SCOPUS records. India's global publication share, annual output, and its citation impact of Indian contribution, partner countries, leading contributors, leading institutes, and highly cited papers were analyzed. Additionally, a cloud technique is used to map frequently used single words in titles. It is observed that India ranks in the $7^{th}$ position with a global publication share of 3.83% and an annual average growth rate of 25.58% during the period 2001-2012. The citation impact of India's contribution is 6.05 which decreased from 12.74 during 2001-2006 to 4.62 during 2007-2012. 17.4% of India's total research output was published with international collaboration.
지금까지 의료서비스에 대한 다양한 연구가 진행되었지만 기존 연구들은 원인변수와 결과변수와의 관계를 규명하는 데만 초점을 두고 있다. 하지만 의료서비스 문제는 다른 서비스 산업과 상대적으로 비교해볼 때 문제 발생 시 고객이 느끼는 감정은 다를 것이라 예측되며, 최근 의료관광과 더불어 의료서비스의 중요성이 부각되는 시점이다. 이에 본 연구는 의료서비스 문제에 관한 정성적 자료를 실증 분석하였으며, 단어구름기법도 이용하였다. 연구의 주요결과를 살펴보면, 의료서비스 문제는 항목별로 의료과실, 간호사 업무미숙, 무심한 진료, 과잉검사 및 진료, 치료강요 및 거부, 응급대기, 불친절, 예약문제, 프로세스문제, 불편함 등 총 10개의 요인으로 나타났다. 그 중 복구 불가능한 서비스 실패에서 가장 많이 산출된 주요 단어는 의료과실, 무심한 진료, 간호사의 업무미숙 순이며, 복구 가능한 서비스 실패에서는 불친절한 태도와 예약시스템에 관한 부정적 경험의 주요 단어가 가장 많이 도출되었다. 의료서비스 문제 후 고객행동은 대부분 강력한 항의를 하며, 아주 심각한 문제에 대해서는 공개적 항의를 하거나 법적대응을 하는 것으로 나타났다. 본 연구의 결론에서는 연구결과 요약과 시사점, 그리고 향후 연구에 대한 제언을 하였다.
빅데이터 분석에서 원시 텍스트 데이터는 대부분 다양한 비정형 데이터 형태로 존재하기 때문에 휴리스틱 전처리 정제와 컴퓨터를 이용한 후처리 정제과정을 거쳐야 분석이 가능한 정형 데이터 형태가 된다. 따라서 본 연구에서는 텍스트 데이터 분석 기법의 하나인 R 프로그램의 워드클라우드를 적용하기 위해서 수집된 원시 데이터 전처리를 통해 불필요한 요소들을 정제하고 후처리 과정에서 불용어를 제거한다. 그리고 단어들의 출현 빈도수를 계산하고 출현빈도가 높은 단어들을 핵심 이슈들로 표현해 주는 워드클라우드 분석의 사례 연구를 하였다. 이번 연구는 R의워드클라우드 기법으로 기존의 불용어 처리 방법인 "내포된 불용어 소스코드" 방법의 문제점을 개선하기 위하여 "일반적인 불용어 코퍼스"와 "사용자 정의 불용어 코퍼스"의 활용 방안을 제안하고 사례 분석을 통해서 제안된 "비정형 데이터 정제과정 모델"의 장단점을 비교 검증하여 제시하고 "제안된 외부 코퍼스 정제기법"을 이용한 워드클라우드 시각화 분석의 실무적용에 대한 효용성을 제시한다.
본 연구의 목적은 국내 인공지능 교육의 최근 연구 동향을 분석하여 향후 인공지능 교육의 방향성을 모색하는 것이다. 2016년부터 2023년 11월까지 RISS(Research Information Sharing Service)에 게재된 논문 중 인공지능 교육 관련 논문 697편을 대상으로 워드 클라우드(Word Cloud)와 LDA 토픽 모델링(Latent Dirichlet Allocation Topic Modeling) 기법을 활용하여 분석하였다. 분석결과, 주요 토픽으로는 생성형 인공지능 활용 교육, 인공지능 윤리 교육, 인공지능 융합 교육, 인공지능 활용에 대한 교사 인식과 역할, 대학 교육에서 인공지능 리터러시(Literacy) 개발, 인공지능 기반 교육과 연구 방향으로 여섯 가지가 도출되었다. 분석결과를 토대로, (1) 다양한 교과목에 생성형 인공지능 활용 확대, (2) 인공지능 사용을 위한 윤리적 지침, (3) 인공지능 교육의 장기적 영향 평가, (4) 고등교육에서 교사의 인공지능 활용 역량, (5) 대학의 인공지능 교육과정 다양화, (6) 인공지능 연구 추이 분석 및 교육 플랫폼(Platform) 개발 등을 제안하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.