• Title/Summary/Keyword: Wool surface

Search Result 151, Processing Time 0.02 seconds

Effect of Low Temperature Plasma and DCCA treatment on the Dyeing Properties of Wool Fabric (DCCA 처리와 저온플라즈마 처리가 양모직물의 염색성에 미치는 영향)

  • Jung, Young-Jin
    • Textile Coloration and Finishing
    • /
    • v.20 no.4
    • /
    • pp.53-59
    • /
    • 2008
  • For the modification of wool surface, wool fabrics treated with oxygen low-temperature plasma(LTP) and dichloroisocyanuric acid(DCCA) were dyed with milling type acid dye. The difference of dyeing properties on modified and control wool fabric were investigated. DCCA treated wool showed that saturation dye uptake and dyeing desorption ratio were higher than LTP treated wool. Dyeing transition temperatures of DCCA and LTP treated wool fabrics were 20$^{\circ}C$ degree lower than control wool fabric. In light color fastness test, DCCA treated wool fabric was 1 grade lower than LTP or control wool fabric.

Effect of Several Solvents on Low Temperature Wool Dyeing (몇 가지 용매가 양모의 저온염색에 미치는 영향)

  • Dho, Seong-Kook
    • Fashion & Textile Research Journal
    • /
    • v.11 no.4
    • /
    • pp.672-677
    • /
    • 2009
  • To reduce the dependence of wool dyeing on the temperature several solvents with different properties and structures were added to the dye bath of C. I. Acid Yellow 42. Nearly the same total solubility parameters(${\delta}_t$) of solvents as those of wool fiber and hydrophobic part of the dyestuff were needed to increase disaggregation of dye molecules, loosening the wool fiber and wickabilty of dyeing solution; besides, the large surface tension(${\gamma}$) value of the solvents and the well balanced values of the three-component Hansen solubility parameters such as dispersion(${\delta}_d$), polar(${\delta}_p$), and hydrogen(${\delta}_h$) bonding parameters were required. Among the added solvents dimethyl phthalate(DMP) and acetophenone(AP) were satisfied with these conditions and worked the most successfully in the low temperature wool dyeing. Their effectiveness proven by the dyeing rate and the activation energy ($E_a$) of the dyeing was in the order of DMP > AP > DBE > CH > M >NONE. In conclusion the total solubility parameters(${\delta}_t$), the three-component Hansen parameters and the surface tension(${\gamma}$) of DMP and AP could be the guidelines to select suitable solvents for low temperature wool dyeing.

A Study on the Mechanical Properties and the Handle of Fabrics -On the blend ratio and weight of summer suits- (직물의 역학적 성질과 Handle에 관한 연구 -하복지의 혼방률과 중량을 중심으로一)

  • Kim Duk Ly;Park Jeang Whan
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.8 no.2
    • /
    • pp.47-57
    • /
    • 1984
  • Effect on the hand value and mechanical properties of blend ratio and weight had been investigated Oil summer suits for men. Relation between the mechanical properties and the deformation in behavior was also studied. The mechanical properties which influence the hand values and total hand value had been discussed and the relation between mechanical properties, hand values and fabric count had, too. As result, the following conclusions had been obtained. 1) The values of tensile properties increased with the increase of blend ratio of wool. The values of surface properties increased according to the increase of blend ratio of polyester. 2HB(bending properties) of polyester/wool blend showed higher value than that of $100\%$ wool, but there was no change in the shearing properties according to the blend ratio. The values of stiffness, crispness and anti-drape stiffness of blend fabric showed higher values than those of $100\%$ wool fabric. The value of fullness (including softness) of blend fabric showed lower value than that of $100\%$ wool fabric. 2) The correlation between hand values and mechanical properties showed following order. in stiffness : bending properties>surface properties in crispness: surface properties>bending properties in anti-drape stiffness: bending properties>surface properties>shearing properties.

  • PDF

Development of Washable Wool Using Environmental-friendly Spray UV-cure Finishing Technique - Using Photocrosslinkable Polymerr Dextran-methacrylate- (환경친화적 Spray UV-Cure 가공 기술을 이용한 물세탁 모직물(washable wool)의 개발 -광가교 고분자인 dextran-methacrylate를 이용하여-)

  • 김신희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.11
    • /
    • pp.1507-1515
    • /
    • 2004
  • Washable wool was developed using environmental-friendly spray UV-cure technique. Photocrosslinkable polymer, dextran-methacrylate, was synthesized starting from natural biopolymer, dextran. The aqueous solution of dextran-methacrylate was applied to wool fabric with various concentrations to find out the optimum condition in minimizing felting shrinkage. The wool fabric subsequently cured by 365 nm UV, The effects of UV-cure time and photoinitiator concentration on felting behavior of wool were examined. As the concentration of dextran-methacrylate increased, the felting shrinkage decreased gradually. At concentration 0.5g/ml, the felting shrinkage of wool was negligible. Other properties such as air permeability, moisture content, wrinkle recovery, thickness and wettability were also evaluated. The surface coating of dextran polymer onto wool fiber was identified by SEM.

The Effect of Steam Treatment on Dyeing Properties of Wool Fibers (증기처리가 양모섬유의 염색성에 미치는 영향)

  • Lee, Mun Cheul;Bae, So Yeung;Wang, In Sook
    • Textile Coloration and Finishing
    • /
    • v.9 no.2
    • /
    • pp.10-16
    • /
    • 1997
  • Merino wool top and fabric have been treated with steams such as superheated steam or high pressure steam. Moisture regain, water absorbency, water penetration, zeta potential, ESCA, SEM, and dyeing behavior were studied. Negative electric potential on the surface of wool fibers by steam treatment became higher than untreated. From the results of ESCA measurement, intensity of $O_{1s}$ was increased by steam treatment. Rate of dyeing and saturation dye exhaustion of wools increased by steam treatment, especially high pressure steam treatment. Moisture regain, water absorbency, water penetration, and surface appearances by SEM photographs of the steam-treated wools didn't change. There is no relationship between dyeing of the steam-treated wool and wettability to water. Therefore It seems likely that relaxation of adhesive filler in interscale of wool by steam treatment accelerate dye penetration into the fiber.

  • PDF

A Study on the Initial Maximum Value of Heat Flux, $q_{max}$ of Wool Fabrics (Part I) - The correlation between $q_{max}$ and thermal conductivity, thermal transmittance, surface air cavity of wool fabrics - (양모 복지의 초기열류속최대치($q_{max}$)에 관한 연구( I ) -열전도도, 열통과성, 표면기공도와의 상관성을 중심으로-)

  • Choi Suk Chul;Jung Jin Soun;Chun Tae il
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.15 no.4 s.40
    • /
    • pp.367-372
    • /
    • 1991
  • In this study, we discussed about the factors effected upon the initial maximum value of heat flux ($q_{max}$). Thermal conductivity, thermal transmittance and surface air cavity of wool fabrics were examind and their correlation to the $q_{max}$ was studied. The factors were examined which had an effect upon the $q_{max}$ of an objective measure of warm/cool feeling. It was simulated by Thermo-Labo apparatures. We selected twenty sorts of pure wool woven fabrics for men's fall -winter cloth (all Wool). The conclusions are as follows; 1. There was not a certain correlation between the $q_{max}$ and the thermal conductivity of wool fabric. 2. When the fabrics touched on the copper plates, the thickness of wool fabric had a negative correlation to the $q_{max}$. The thermal transmittance had a positive correlation. Both of them had a good correlation to the $q_{max}$. 3. As a major factor, the thickness of fabric effected on the $q_{max}$.

  • PDF

Water and Oil Repellency of Wool Fabric Treated with Nano-type Finishing Agent (Wool 직물의 나노 발수 발유가공)

  • Choi, Bo-Ryun;Han, Sam-Sook;Lee, Mun-Cheul
    • Textile Coloration and Finishing
    • /
    • v.20 no.6
    • /
    • pp.26-34
    • /
    • 2008
  • Wool fabric having high moisture content were treated with fluorocarbon-based water and oil repellent finishing agents by pad-dry-cure system. Three types of finishing agents which were regular-type or nano-type were adapted to compare the surface chemical composition, water and oil repellent property, crease recovery angle, and durability to repeated laundering. From the surface chemical compositions resulted by ESCA and C1s curve-fitting, it was shown that the regular-type finishing agent were easily taken off from the finished wool fabrics after repeated laundering. On the other hand, the fluoroalkyl groups of nano-type finishing agents turned round from fabric surface to fiber internal after repeated laundering. The water repellency of the wool fabrics treated with regular-type agent had a little changes according to the treatment condition changes and sharply decreased with repeated laundering. However, these values when treated with nano-type agents increased with the concentration and cure temperature and were maintained after 20 times laundering. The wool fabrics treated with nano-type agent had a great oil repellency irrespective of treatment conditions. Furthermore, the wrinkle recovery values of the wool fabrics treated with nano-type agents were higher than those of the fabrics treated with regular-type agent and were unchanged after 20 times laundering.

Modification of Wool Fiber by Enzymatic Treatment(II) -The Dyeing Behavior of Wool Fiber Enzyme-treated- (효소처리에 의한 양모섬유의 개질 (II) -효소처리 양모의 염색성 고찰 -)

  • 김태경;심창섭;조민정;임용진
    • Textile Coloration and Finishing
    • /
    • v.5 no.3
    • /
    • pp.206-215
    • /
    • 1993
  • In the prior study, wool gabardines were treated with alkaline proteases which were some kinds of enzyme to decompose protein, and their tensile strengths were determined, and the surface of the fibers were also observed using a scanning electron microscope. Enzylon ASN 30 and Alkalase 2.5L DX did not show much effect on the weight loss of wool, however, the weight loss of wool increased considerably with treating Esperase 8.0L. Pretreatment of wool with dichloloisocyanuric acid before protease-treatment increased the weight loss of wool to a great extent. In this study, the enzyme treated wools dyeing behaviors with acid dye, Milling Cyanine 5R, were mainly investigated. The protease-treatment remarkably increased not only the rate of dyeing but also the saturation dye uptake. From these results, it seemed likely that the structural relaxation of adhesive filler of interscale or intercellular cement facilitated the dye penetration into the fibers, at the same time, the change in the inner structure of the wool fibers by the protease made the fixation of the dyes more efficient.

  • PDF

Dyeing Properties and Scouring of Wool/Polyester Blend Fabrics Using Papain from Carica Papaya (파파인 가공한 양모/폴리에스터 혼방직물의 정련 및 염색성)

  • Song, Hyun-Joo;Kim, Hye-Rim;Song, Wha-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.2
    • /
    • pp.213-221
    • /
    • 2009
  • This study provides the optimum papain treatment method and its effect on wool/polyester blend fabrics. The enzymatic treatment condition is optimized depending on its pH level, temperature, concentration of enzyme, treatment time and concentration of activators. The characteristics of samples treated with the papain are measured using weight loss, tensile strength, whiteness, WCA, dyeing property and surface micrographs. The results are described as follows: According to measuring weight loss, tensile strength and whiteness, a pH level of 7.5, $70^{\circ}C$, 10% papain(o.w.f.) and 60minutes of treatment time are optimized for papain treatment. L-cysteine and sodium sulfite are able to activate the papain. The optimum concentrations of them are 10mM and 50mM respectively. The WCA of fabrics is decreased since papain treatment makes wool/polyester blend fabrics more hydrophilic. Scouring with papain treatment improves whiteness and dyeing property of fabrics. The dyeing property of papain-treated fabrics is enhanced simply by a single step dyeing process using a basic dye. The surface of wool treated with papain in the presence of L-cysteine shows to be descaled. The surface of wool fibers in the presence of sodium sulfite, however, shows it is hydrolyzed evenly instead of being descaled. The surface of papain treated polyester fibers shows cracks and voids.

Effect of Low Temperature Plasma Treatment on Wool Fabric Properties

  • Kan C. W.;Yuen C. W. M.
    • Fibers and Polymers
    • /
    • v.6 no.2
    • /
    • pp.169-173
    • /
    • 2005
  • Low temperature plasma (LTP) treatment was applied to wool fabric with the use of a non-polymerizing gas, namely oxygen. After the LTP treatment, the fabric properties including low-stress mechanical properties, air permeability and thermal properties, were evaluated. The low-stress mechanical properties were evaluated by means of Kawabata Evaluation System Fabric (KES-F) revealing that the tensile, shearing, bending, compression and surface properties were altered after the LTP treatment. The changes in these properties are believed to be related closely to the inter-fiber and inter-yam frictional force induced by the LTP. The decrease in the air permeability of the LTP-treated wool fabric was found to be probably due to the plasma action effect on increasing in the fabric thickness and a change in fabric surface morphology. The change in the thermal properties of the LTP-treated wool fabric was in good agreement with the above findings and can be attributed to the amount of air trapped between the yams and fibers. This study suggested that the LTP treatment can influence the final properties of the wool fabric.