• Title/Summary/Keyword: Wool fabric

Search Result 236, Processing Time 0.026 seconds

Thermal Comfort and Tactile Wearing Performance of Wool/nylon Fabrics for Tra-biz Garment (울/나일론 tra-biz 의류용 직물 소재의 열적 쾌적성과 착용특성)

  • Kim, Hyun Ah
    • Fashion & Textile Research Journal
    • /
    • v.18 no.6
    • /
    • pp.878-888
    • /
    • 2016
  • In this study, wool/nylon(50/50%) blend yarn and its fabrics for tra-biz(complex word of travel+business) garment were prepared, and its wear comfort characteristics were investigated through thermal manikin and human-body wearing experiment. In addition, tactile wearing performance from fabric mechanical properties and the dimensional stability and the pilling of the fabric specimen during wearing and dry-cleaning were measured and compared with those of wool 100% fabric specimen. Heat keepability of the wool/nylon(50/50%) blend fabric by thermal manikin experiment was superior than that of wool 100% fabric, this result was verified with human-body wearing experiment and its result coincided well with this experimental result. Tactile wearing performance of the wool/nylon(50/50%) fabric from fabric mechanical properties measured by FAST system was better than that of the wool 100% fabric. The dimensional stability of the wool/nylon(50/50%) fabric was more stable than that of the wool 100% fabric. Because relaxation shrinkage was lower and hygral expansion of wool 100% fabric was more high. However, the breathability and pilling property of the wool/nylon(50/50%) fabric were inferior than those of the wool 100% fabric. The possibility of application for tra-biz garment of wool/nylon(50/50%) blend fabric was observed because of good heat keepability, tactile wearing performance and washing fastness.

Detergency and Soil Redeposition of Wool Fabric in Eco-friendly Drycleaning Solvent(Decamethylcyclopentasiloxane) (친환경 실리콘계 드라이클리닝용제(Decamethylcyclopentasiloxane)에서 모직물의 세척성과 재오염성)

  • Kim, Chun-Hee
    • Textile Coloration and Finishing
    • /
    • v.24 no.2
    • /
    • pp.138-144
    • /
    • 2012
  • Detergency and soil redeposition of wool fabric in 8 nonionic surfactants (Span 20, 40, 60, 80/Tween 20, 40, 60, 80) and 4 solvents (water, petroleum, perchloroethylene(PCE), decamethylcyclopentasiloxane($D_5$)) were studied. Detergency of wool fabric in water was very low with and without surfactants due to the low wetting and difficulty in penetration of water into the fabric. Lipophilic surfactants improved the detergency of wool fabric in petroleum solvent and PCE. The detergency of wool fabric in $D_5$ was similar to that in petroleum solvent without surfactants. When water was solubilized, Span 20 addition to petroleum solvent and PCE increased the detergency of wool fabric. The detergency for $D_5$ was improved with solubilized water, however, it was lowered when the surfactants were added to the system. Therefore, it is important to formulate appropriate detergents which have good solubility and affinity to silicone for $D_5$ charge system. Hydrophilic surfactants were effective for water and lipophilic surfactants were effective for petroleum solvent and PCE in soil redeposition prevention of wool fabric. The soil redeposition prevention effects are not found in $D_5$ with both Span 20 and Tween 20. The same tendency of results in soil redeposition of wool fabric is observed when water is solubilized.

Effect of Low Temperature Plasma and DCCA treatment on the Dyeing Properties of Wool Fabric (DCCA 처리와 저온플라즈마 처리가 양모직물의 염색성에 미치는 영향)

  • Jung, Young-Jin
    • Textile Coloration and Finishing
    • /
    • v.20 no.4
    • /
    • pp.53-59
    • /
    • 2008
  • For the modification of wool surface, wool fabrics treated with oxygen low-temperature plasma(LTP) and dichloroisocyanuric acid(DCCA) were dyed with milling type acid dye. The difference of dyeing properties on modified and control wool fabric were investigated. DCCA treated wool showed that saturation dye uptake and dyeing desorption ratio were higher than LTP treated wool. Dyeing transition temperatures of DCCA and LTP treated wool fabrics were 20$^{\circ}C$ degree lower than control wool fabric. In light color fastness test, DCCA treated wool fabric was 1 grade lower than LTP or control wool fabric.

Dimensional Properties of Low Temperature Plasms and Silicone Treated Wool Fabric

  • Kim, Min-Sun;Kang, Tae-Jin
    • Fibers and Polymers
    • /
    • v.2 no.1
    • /
    • pp.152-156
    • /
    • 2001
  • Three different silicone polymer systems, such as aminofunctional, epoxyfunctional, and hydrophilic epoxyfunctional silicone polymers, were applied onto plasma pretreated wool fabric to improve the dimensional properties. The results showed that the plasma pretreatment modified the cuticle surface of the wool fiber and increased the reactivity of wool fabric toward silicone polymers. Felting shrinkage of plasma and silicone treated wool fabric was decreased with different level depending on the applied polymer system. Fabric tear strength and hand were adversely affected by plasma treatment, but these properties were favorably restored on polymer application. Therefore, it has been concluded that the combination of plasma and silicone treatments can achieve the improved dimensional stability, and better performance properties of wool fabric. The surface smoothness appearances of treated fabrics were measured using a new evaluation system, which showed good correspondence with the results of KES-FB4 surface tester.

  • PDF

A study on the damage of some fibers affected by growth of Dermatophytes (Dermatophytes의 번식에 의한 몇가지 섬유의 손상에 관한 연구)

  • Nam Yun Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.2 no.2
    • /
    • pp.237-243
    • /
    • 1978
  • Dermatophytes such as Trichophyton mentagrophytes, Trichophyton rubrum and Epidermophyton floccosum are used in this study to confirm (a) The Dermatophytes could utilize the wool, cotton and nylon fiber as a nutrient source. (b) The degree of damage of fibers by the Dermatophytes growth. The results of the experiment are summarized as follows; 1. Dermatophytes could not utilize the wool, cotton and nylon fiber directly as a nutrient source without the exogenously applied nutrients. 2. It was presumed that Dermatophytes could utilize the knitted wool fabric as their nutrient source when nutrient was exogenously applied. since the knitted wool fabric was greatly damaged by T. mentagrophytes and T. rubrum growth. 3. The tensile strength of knitted wool fabric was significantly decreased by T. mentagrophytes and T. rubrum, but not by E. floccosum. However, the tensile strength of knitted nylon fabric was not particularly affected by the Dermatophytes. 4. The burst strength of knitted wool fabric was decreased by T. mentagrophytes ($77\%$). T. rubrum ($53\%$). and E. floccosum ($15\%$). Though the burst strength of knitted cotton fabric was decreased by Dermatophytes about $20\%$, that of knitted nylon fabric was not affected. 5. Observing the damaged wool fiber by scanning microscope, the inner part of wool fiber was permeated by T. mentagrophytes and T. rubrum.

  • PDF

The Types and Characteristics of Korean Traditional Wool Fabrics (한국 전통 모직물의 유형과 특성)

  • Jang Hyun-Joo
    • Journal of the Korean Society of Costume
    • /
    • v.54 no.8
    • /
    • pp.87-100
    • /
    • 2004
  • This study is to understand the types and characteristics of wool fabrics of the Korea. It classifies the types of wool fabrics whose name can be found in the documents by their weaving methods and it researches their characteristics by type, time, usage, and pattern. In Wool fabric of the ancient age were there compound weaving fabric, such as Gyesoo. which is made with embroidery method, Gyegum, which is made with embroidery in gold threads, as well as general fabric, such as plain-weaved Gal, twill-weaved Sagal, gauze-weaved Mosa, Mora, etc. There were also various weaving methods, such pile-weaved Yung, tapestry-weaved Tabdung, or Guyoo, or Dahm, felt-weaved Jeon, etc. It was found in documents that wool fabric such as Gye, Jeon, Dahm were produced in Korea and China. In case of Korea, wool fabric was enormously developed in Koguryo, Shilla, Balhai, United Shilla. Koryo era. Particularly in Koguryo and Balhai, the stock-farming and hunting were the main parts of their occupation. In Koryo era, the weaving technique of wool fabric had made great development. The wool fabric was used not only in clothing but also in official hats, rugs. wall-tapestries, etc.

A Study on Physical Properties of Wool with Shrink-resist treatment and Felting (양모 방축가공에 따른 물리적 성질 변화)

  • Jeong, Ahyun;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.19 no.2
    • /
    • pp.23-35
    • /
    • 2015
  • In this study, the effect of shrink-resist treatment agent on the wool finishing, specifically anti-felting of wool product was studied. We aimed at providing preliminary data leading to the diversification of high-value added fashionable wool product. Two type of wool fabrics, dense and sheer, were employed. The fabric specimens were treated with solutions of shrink-resist treatment agent with wet pick-up rate 110%, 130%, and 150%, respectively, by using a padding mangle. The solution treated fabric specimens were then dried at room temperature first, at $90^{\circ}C$ for 15 minutes in a drying oven, and finally cured at $130^{\circ}C$ for 3 minutes. Cured wool fabric specimens were then subjected to a felting process. The physical and mechanical properties, including shrinkage rate along warp/filling direction, thickness at specified measurement pressure, drape stiffness, and air-permeability, were analyzed. After felting process, the shrinkage rates of wool fabric specimens, treated with shrink-resist treatment agent, were lower than those of control wool fabric specimens. The stiffness values of wool fabric specimens measured by using Flexometer were increased.

Effect of Low Temperature Plasma Treatment on Wool Fabric Properties

  • Kan C. W.;Yuen C. W. M.
    • Fibers and Polymers
    • /
    • v.6 no.2
    • /
    • pp.169-173
    • /
    • 2005
  • Low temperature plasma (LTP) treatment was applied to wool fabric with the use of a non-polymerizing gas, namely oxygen. After the LTP treatment, the fabric properties including low-stress mechanical properties, air permeability and thermal properties, were evaluated. The low-stress mechanical properties were evaluated by means of Kawabata Evaluation System Fabric (KES-F) revealing that the tensile, shearing, bending, compression and surface properties were altered after the LTP treatment. The changes in these properties are believed to be related closely to the inter-fiber and inter-yam frictional force induced by the LTP. The decrease in the air permeability of the LTP-treated wool fabric was found to be probably due to the plasma action effect on increasing in the fabric thickness and a change in fabric surface morphology. The change in the thermal properties of the LTP-treated wool fabric was in good agreement with the above findings and can be attributed to the amount of air trapped between the yams and fibers. This study suggested that the LTP treatment can influence the final properties of the wool fabric.

Dyeing of Wool Fabric by the Pigment Extracted from Opuntia Ficus-indica (선인장 열매의 색소 추출물에 의한 양모섬유의 염색)

  • Lee Se-Hee;Cho Yong-Suk;Choi Soon-Hwa
    • Textile Coloration and Finishing
    • /
    • v.18 no.2 s.87
    • /
    • pp.8-14
    • /
    • 2006
  • The pigment extraction of Opuntia ficus-indica has been conducted to develop useful natural dyes in place of synthetic dyes which are suspected to bring serious environmental pollutions. The dyeing ability on wool fabric by addition of ascorbic acid and several mordants were investigated by means of color measurement. In addition, the fastness of washing, perspiration, rubbing, light, dry cleaning, effect on bacterial reduction and UV-B protection were also investigated. From these investigation, it is suggested that the pigment extracted from Opuntia ficus-indica can be used as a source of natural dyes and the obtained result are as follows. 1. Maximum absorption band (${\lambda}max$) of Opuntia ficus-indica extract is 533nm. 2. The wool fabric dyed with Opuntia ficus-indica extract has stable color by the addition of ascorbic acid and is achieved with addition of 0.1% ascorbic acid, 0.5% several mordant, and three repeated dying at $50^{\circ}C$ for 1.5hr. 3. The wash fastness of the dyed wool fabric when it is washed with neutral detergent is more effective than alkaline detergent. The dry cleaning fastness of the dyed wool fabric is more excellent. In addition, the perspiration fastness of the dyed wool fabric is increased by mordanting method. And than the rubbing fastness of the dyed wool fabric is showed excellent under dryness and wetness. Light fastness of the dyed wool fabric, however is showed inferiority. 4. The wool fabric dyed with Opuntia ficus-indica extract is showed effective bacterial reduction and UV-B protection is increased remarkably.

Physical Properties of Ultra-fine Denier Filament Yarn Fabric

  • Kim, Jong-Jun;Son, Yang-Kug
    • Journal of Fashion Business
    • /
    • v.10 no.3
    • /
    • pp.23-30
    • /
    • 2006
  • Various high-touch textile products have been developed recently including ultra-fine denier filament yarn fabrics. The touch or hand of high value-added products is of prime importance. Physical and mechanical properties of fabric specimens, ultra-fine denier filament yarn fabric specimen, 100% wool fabric and wool/polyester 50:50 fabric,were measured using the KES. Compressibility of the ultra-fine denier fabric is recommendable, possibly due to the good bulk property of the specimen. Overall, the THV of the ultra-fine denier fabric is positioned between those of the 100% wool fabric and wool/polyester 50:50 fabric. Observed differences in the physical and mechanical properties explain the fabric specimen characteristics reasonably.