• Title/Summary/Keyword: Woody waste

Search Result 25, Processing Time 0.028 seconds

A Study on the Actual Vegetation of Nanji-do for Restoration of Ecosystem after Stabilization Construction (난지도 안정화공사 이후 생태계 복원을 위한 현존식생에 관한 연구)

  • 이경재;오충현;김지석
    • Korean Journal of Environment and Ecology
    • /
    • v.11 no.1
    • /
    • pp.126-132
    • /
    • 1997
  • Nanji-do is an island in Seoul, the area is 272ha, and in which gad was piled up waste discharged from Seoul metropolitan for 15 years(form March 1978 to March 1993). The volume of waste is 92, 000, 000m$^{2}$. The actual vegetation area of Nanji-do is 191ha, and the area of woody plant is 31ha. The rest area is covered by herbaceaus plant. In actual vegetation area of woody plant, Robinia pseudoacacia community and Salix pseudo-lasiogyne community are 83%. The soil pH is alkaline, though general soil pH is acid in Seoul. There is no relation with soil condition and actual vegetation. The result of this study, actual vegetation of Nanji-do don't help the establishment of vegetation restoration after soil stabilization construction. And so following a countermeasure is proposed. 1) Selection of adequate species by an experiment of planting pioneer species, native species, and dietary species 2) Establishment of an adequate planting plan and development of slope stabilization method by planting of native species 3) Establishment of a restoration plan of animal ecosystem by survey for animal ecosystem

  • PDF

The Dyeing Properties of Woody Fiber Regenerated from Waste MDF by Reactive Dyes (반응성염료에 의한 폐MDF 재생 목질섬유의 염색특성)

  • Ju, Seon-Gyeong;Roh, JeongKwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.163-177
    • /
    • 2019
  • This study aims to review the relations between the dyeing conditions (i.e., dye concentration, addition amounts of salt and alkali, and dyeing temperature) and dyeing properties and color fastness to light for identifying the optimal dyeing conditions when dyed regenerated woody fibers were obtained through the defibration of waste medium density fiberboard (MDF) using reactive Red H-E3B (Bis-monochlorotriazine (MCT)/MCT type) and reactive Red RB133% (Bis-MCT/Vinyl sulphone type). The dyeing yield (K/S) obtained using two types of reactive dyes increased as the dye concentration increased by 1-10% (on the weight of fiber (OWF)). In addition, the K/S of H-E3B was higher than that of RB133% irrespective of the dye concentration. The color difference of H-E3B after ultraviolet (UV) radiation was lower than that of RB133%, denoting good resistance to discoloration by UV. As the amount of sodium sulfate increased, the color difference and K/S also increased, and the adequate salt content was determined to be 50-70 g/L. Further, the color difference and K/S significantly increased only the addition of 2 g/L of sodium carbonate; however, almost no difference was observed when more than 2 g/L of sodium carbonate was added. The addition amount of sodium carbonate was adequate 5-10 g/L to dyeing the fiber and the pH at this addition level was 10. The dyeing yield of H-E3B increased when the dyeing temperature increased; however, it subsequently decreased after the dyeing temperature became $80^{\circ}C$. The dyeing yield of RB133% was almost the same up to $60-70^{\circ}C$ but declined subsequently. Thus, the adequate temperatures were $80^{\circ}C$ and $60^{\circ}C$ for H-E3B and RB133%, respectively. If the waste MDF woody fiber was dyed under the aforementioned optimal conditions, dyed regenerated woody fiber can be obtained having the following colors: 1.5 to 2.0R with the H-E3B dye and 9.6 to 10.0 PR with RB133%.

Study on the Characteristics of Bio-mass according to Various Process of Torrefaction (반탄화 공정 변화에 따른 바이오매스 연료의 특성 연구)

  • Ohm, Tae-In;Chae, Jong-Seong;Kim, Jung-Ku;Choi, Soo-A;Oh, Sea-Cheon
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.375-378
    • /
    • 2014
  • In this study, we carried out torrefaction experiment using PKS(Palm Kernel Shell), and Bagasse as a raw material of oversee of herbaceous biomass and using waste wood and logging residue as a raw material of domestic of woody biomass. And then, by analyzing the physical & chemical properties, we investigated the characteristics as a fuel. By using the result of thermo gravimetric analysis, the biomass residue was torrefied for 30 minutes at a temperature range of $250-350^{\circ}C$ in anaerobic condition. As a result, torrefied materials of moisture content are lower than raw, but of fixed carbon, calorific value and ash are higher than raw.

  • PDF

Production of Activated Carbon from Woody Fishing Port Wastes Using Sulfuric Acid as Activating Agent (목질(木質) 어항(漁港) 폐기물(廢棄物)을 원료(原料)로 한 황산(黃酸)에 의한 활성탄(活性炭) 제조(製造))

  • Kim, Dong-Su;Lee, Jung-Eun
    • Resources Recycling
    • /
    • v.15 no.2 s.70
    • /
    • pp.50-57
    • /
    • 2006
  • Production of activated carbon from woody fish parking cases has been studied using waste sulfuric acid as an activating agent for the purpose or promoted recycling of woody fishing port wastes. The adsorption capacity of produced activated carbon was observed to increase with activation temperature and reached its maximum at ca. $650^{\circ}C$ under the experimental conditions. However, the adsorption capacity of activated carbon became deteriorated above this temperature due to the thermal degeneration of its structure. Optimal activation time was found to be about 120 minutes and 1:3 weight ratio of raw material and activating agent was appropriate for increased adsorption capacity of activated carbon under the conditions of $550^{\circ}C$ and 60 minutes of activation time. Regarding the effect of the concentration of activating agent on activation, ca. 1.2 M of sulfuric acid was observed to be proper for an optimal activation or raw material. Comparison of the activation power of sulfuric acid with nitric acid showed that sulfuric acid was superior to nitric acid, however, with regard to the yield of activated carbon there was no significant difference between the two activating agents. The degree of dispersion of carbon particles was shown to be relatively high in neutral condition and the produced activated carbon was considered to be effectively employed for the treatment of metal ions in wastewater due to its negative surface charge in aqueous condition.

Performance Evaluation of Batch Pulp Digester using By-product (Sheath) from Bamboo Laminate Production

  • Fatoki, Jimoh Gbenga
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.362-368
    • /
    • 2018
  • Purpose: Self-sufficiency in paper production is desired in Nigeria. This study was aimed at evaluating the performance of a locally fabricated batch pulp digester. Methods: The pulp yields of sheaths generated as waste in the production of bamboo (Bambusa vulgaris) laminates were determined at different liquor concentrations and treatment time after preliminary experiments to ascertain the conditions under which the sheath started to pulp. Moreover, the optimum pulping conditions and fiber characteristics were determined and estimated, respectively, to ascertain the pulp fiber suitability for paper production. Results: An optimum pulp yield of 65.1% was obtained at 50% NaOH and 25% $Na_2S$ liquor concentration (w/w) when the cooking time was 4 h. The results of fiber characterization of the pulp indicated an average fiber length of 2.19 mm with a low Runkel ratio of 1.63, both of which signify the suitability of the pulp for medium quality paper production. Conclusions: Softwood pulp can be blended with the fibers to improve the strength of the produced paper; further investigation should be carried out to use other non-woody plants for pulp and papermaking.

Heavy Metals of Landfilled Biomass and Their Environmental Standard, Including CCA-treated Wood for Eco-housing Materials (방부처리 목재를 포함한 토양매립 바이오메스의 중금속 함량과 안전성 문제)

  • Lim, Kie-Pyo;Lee, Jong-Tak;Bum, Jung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.37-45
    • /
    • 2006
  • Recently, wood-framed houses has been built in the Korea for pension. Wood is good material for human healthy, while the construction lumbers are treated with preservative such as CCA (chromated copper arsenate), which contain some toxic elements for human body. However, if the waste woody biomass treated with various heavy metals, which has been collected from house construction or demolition, was fired in the field, and incinerated or landfilled after mass collection, such components will result in the toxic air pollutants in the burning or land fills, and spreaded into other areas. So the careful selection of wood and chemicals are required in advance for house construction, in particular, for environment-friendly housings. Therefore, this study was carried out to determine the content of toxic heavy metals in woody materials such as domestic hinoki and imported hemlock treated with CCA for housing materials, and the post-treated wood components such as organic fertilizer, sludge, dry-distilled charcoal and carbonized charcoal, to be returned finally into soil. The results are as follows. 1) The chemical analysis of toxic trace elements in various solid biomass required accurate control and management of laboratory environment, and reagents and water used, because of the error of data due to various foreign substances added in various processing and transporting steps. So a systematic analyzers was necessary to monitor the toxic pollutants of construction materials. 2) In particular, the biomass treated with industrial biological or thermal conditions such as sludge or charcoals was not fully dissolvable after third addition of $HNO_3$ and HF. 3) The natural woody materials such as organic fertilizer, sludge. and charcoals without any treatment of preservatives or heavy metal components were nontoxic in landfill because of the standard of organic fertilizers, even after thermal or biological treatments. 4) The CC A-treated wood for making the construction wood durable should not be landfilled, because of its higher contents of toxic metals than the criterion of organic fertilizer for agriculture or of natural environment. So the demolished waste should be treated separately from municipal wastes.

Gasification of Woody Waste in a Two-Stage Fluidized Bed Varying the Upper-reactor Temperature and Equivalence Ratio (상부온도(上部溫度)와 공기비(空氣比) 변화(變化)에 따른 폐목재(廢木材)의 이단(二段) 유동층(流動層)가스화(化))

  • Mun, Tae-Young;Kim, Jin-O;Kim, Jin-Won;Kim, Joo-Sik
    • Resources Recycling
    • /
    • v.19 no.2
    • /
    • pp.45-53
    • /
    • 2010
  • During the biomass gasification, tar generation is typically accompanied, which causes many problems, such as pipe plugging and equipment fouling. In the experiments, activated carbon was applied to the upper reactor of the two-stage gasifier in order to remove the tar generated during gasification. In addition, the effects of the upper-reactor temperature and equivalence ratio on the producer gas characteristics (composition, tar content and lower heating value) were investigated. To investigate the effect of the upper reactor-temperature, experiments were performed at 743, 793, $838^{\circ}C$, respectively. To examine the influence of the equivalence ratio, a comparison experiment was carried out at a equivalence ratio of 0.17. In all experiments, tar contents in the producer gases were below $2mg/Nm^3$. The maximum LHV of the producer gas was above $10MJ/Nm^3$, which is much higher than the typical LHV($3\sim6MJ/Nm^3$) in the air gasification of biomass.

Fermentation of Waste Woody Biomass for the Production of Bioenergy (바이오에너지생산을 위한 목질계 폐바이오매스의 발효)

  • Cho, Nam-Seok;Choi, Tae-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.147-158
    • /
    • 2008
  • In this study, fermentation characteristics of waste agricultural and forest biomass for production of heat energy were focused to be used in agricultural farm households. The purpose of this study was focused on seeking practical utilization of agricultural and forest biomass wastes in agricultural farm households in the form of thermal energy by means of simple fermentation process. Fermentation process was performed in terms of different raw-materials and their mixture with different ratios. Urea, lime, and bioaids were added as fermenting aids. Moisture contents of fermenting substrates were adjusted to 55~65%. In order to optimize the fermentation process various factors, such as raw-materials, moisture contents, amount of fermenting aids, and practical measurement of hot-water temperature during fermentation were carefully investigated. The optimum condition of fermenting process were obtained from hardwood only and hardwood: softwood (50 : 50) beds. In case of hardwood only the highest temperature was recorded between 60 to $90^{\circ}C$ the lowest temperature was determined to more or less $40^{\circ}C$ and the average temperature was ranged to $50{\sim}60^{\circ}C$ and this temperature ranges were maintained up to 20~30 days. The optimum amount of additives were estimated to ca. 15 kg of urea, 20 kg of bioaids, and 10 kg of lime for 1 ton of substrate. To reach the highest temperature the optimum moisture content of fermenting substrate was proved to 55% among three moisture content treatments of 45%, 55% and 65%. The temperature of hot-water tank installed in fermenting bed of hardwood : grass (50 : 50) showed very different patterns according to measuring positions. In general, temperatures in the mid- and upper-parts of substrate piling were relative higher than lower and surface parts during 45-day fermentation process. The maximum temperature of fermenting stage was determined to $65^{\circ}C$, minimum temperature, more or less $40^{\circ}C$, and average temperature was $60^{\circ}C$. The water temperature of tank exit was ranged to $33{\sim}48^{\circ}C$ during whole measuring periods. It could be concluded that fermentation process of waste agricultural and forest biomass produces a considerable amounts of heat, averaging about $50{\sim}60^{\circ}C$ for maximum 3 months by using the heat exchanger (HX-helical type).

Environmental management strategies of Korean paper industry for response to climate change (기후변화 대응을 위한 국내 제지산업의 환경 경영 방안)

  • Kim, Dong Seop;Sung, Yong Joo;Kim, Se-Bin;Lee, Joon-Woo;Park, Gwan-Soo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.4
    • /
    • pp.42-51
    • /
    • 2013
  • Climate changes have become the major issue for the sustainable society and the various regulation has been established for promoting low carbon and green growth in Korea. The paper industry as a large comsumer of energy is forced to cope with these regulation. In this study, the various examples were investigated for providing the basic schemes to develop environmental management strategies of Korean paper industry. The various cases to follow carbon economic were introduced and were categorized into five ways, for example, the carbon capture projects such as reforestation, the increasing the process efficiency, the resource recovery form process waste, the cogeneration systems, the application of non-woody biomass.

Air Gasification Characteristics of Unused Woody Biomass in a Lab-scale Bubbling Fluidized Bed Gasifier (미이용 산림바이오매스 및 폐목재의 기포 유동층 Air 가스화 특성 연구)

  • Han, Si Woo;Seo, Myung Won;Park, Sung Jin;Son, Seong Hye;Yoon, Sang Jun;Ra, Ho Won;Mun, Tae-Young;Moon, Ji Hong;Yoon, Sung Min;Kim, Jae Ho;Lee, Uen Do;Jeong, Su Hwa;Yang, Chang Won;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.874-882
    • /
    • 2019
  • In this study, the gasification characteristics of four types of unused woody biomass and one waste wood in a lab-scale bubbling fluidized bed gasifier (Diameter: 0.11 m, Height: 0.42 m) were investigated. Effect of equivalence ratio (ER) of 0.15-0.3 and gas velocity of $2.5-5U_0/U_{mf}$ are determined at the constant temperature of $800^{\circ}C$ and fuel feeding rate of 1 kg/h. The silica sand particle having an average particle size of $287{\mu}m$ and olivine with an average particle size of $500{\mu}m$ were used as the bed material, respectively. The average product gas composition of samples is as follows; $H_2$ 3-4 vol.%, CO 15-16 vol.%, $CH_4$ 4 vol.% and $CO_2$ 18-19 vol.% with a lower heating value (LHV) of $1193-1301kcal/Nm^3$ and higher heating value (HHV) of $1262-1377kcal/Nm^3$. In addition, it was found that olivine reduced most of C2 components and increased $H_2$ content compared to silica sand, resulting in cracking reaction of tar. The non-condensable tar decreases by 72% ($1.24{\rightarrow}0.35g/Nm^3$) and the condensable tar decreases by 27% ($4.4{\rightarrow}3.2g/Nm^3$).