• Title/Summary/Keyword: Woodchip

Search Result 53, Processing Time 0.02 seconds

Clogging Potential in Constructed Vertical Flow Wetlands Employing Different Filter Materials for First-flush Urban Stormwater Runoff Treatment (도시 초기 강우유출수 처리를 위한 수직흐름습지에서 여재별 폐색 잠재성 분석)

  • Chen, Yaoping;Guerra, Heidi B.;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.20 no.3
    • /
    • pp.235-242
    • /
    • 2018
  • The function of vertical subsurface flow wetlands can potentially be reduced with time due to clogging and are often assumed to be occurring when ponding and overflow is observed during rainfall. To investigate their clogging potential, three pilot-scale vertical subsurface flow (VSF) wetland systems were constructed employing woodchip, pumice, and volcanic gravel as main media. The systems received stormwater runoff from a highway bridge for seven months, after which the media were taken out and divided into layers to determine the amount and characteristics of the accumulated clogging matters. Findings revealed that the main clogging mechanism was the deposition of suspended solids. This is followed by the growth of biofilm in the media which is more evident in the wetland employing woodchip. Up to more than 30% of the clogging matter were found in the upper 20 cm of the media suggesting that this layer will need replacement once clogging occurs. Moreover, no signs of clogging were observed in all the wetlands during the operation period even though an estimation of at least 2 months without clogging was calculated. This was attributed to the intermittent loading mode of operation that gave way for the decomposition of organic matters during the resting period and potentially restored the pore volume.

Hydroponic Culture of Leaf Lettuce Using Mixtures of Fish Meal, Bone Meal, Crab Shell and the Pig Slurry Leachate of Woodchip Trickling Filter (목편살수여상 침출액비와 어분, 골분, 게껍질 혼합액을 이용한 상추의 수경재배)

  • Ryoo, Jong-Won
    • Journal of Animal Environmental Science
    • /
    • v.16 no.3
    • /
    • pp.215-226
    • /
    • 2010
  • The pig slurry leachate was dark brown-colored solution that leaches out of woodchip trickling filter. The purpose of this research was to investigate the effect of pig slurry leachate and byproduct on growth characteristics of leaf lettuce in hydroponics culture. The effects of addition of fish meal, bone meal and crab shell for the growth of leaf lettuce were investigated. Leaf lettuce were grown in each of six combination treatment solutions; slurry leachate, slurry leachate + fish meal, slurry leachate+bone meal, slurry leachate + crab shell and chemical hydroponic solution for lettuce based on EC content. The chemical nutrient solution was the solution of National Horticulture Research Station for the growth of lettuce. The all of nutrient solution was adjusted 1.5 mS/cm in EC in hydroponics culture. 1. The pH level of leachate of trickling filter was increased and EC decreased gradually during treatment. Pig slurry leachate was low in suspended solids (SS), phosphorus (P), but rich in potassium (K). 2. The plot of slurry leachate (SL) was lowest in the growth characteristics of lettuce. The leaf length and width of lettuce treated with mixture plot of slurry leachate and fish meal (SL + FM) was higher compared with plot in slurry leachate. The chlorophyll reading was reduced in plot treated with slurry leachate, but that in plot of SL+FM was similar compared with control plot. 3. The fresh weight of lettuce showed lowest in the plot treated with slurry leachate. The addition of fish meal increased the yield of comparing plot of slurry leachate, but plots of bone meal and crab shell addition were not significantly difference. The fresh weight of leaf lettuce in plot of SL+FM was 87% as 400.0g compared with control. In conclusion, the mixture solution of pig slurry leachate and fish meal could be used as a nutrition solution of organic lettuce hydroponics.

Growth Characteristics of Lychnis Cognate and Soil Moisture by Organic Mulching Material Type in Extensive Green Roof System (저관리 경량형 옥상녹화에서 유기물 멀칭재 유형에 따른 토양수분과 동자꽃의 생육 특성)

  • Park, Sun Young;Chae, Ye Ji;Choi, Seung Yong;Yoon, Yong Han;Ju, Jin Hee
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.2
    • /
    • pp.107-112
    • /
    • 2022
  • This study was conducted to investigate the effects of mulching materials in extensive green roof system by comparing and analyzing the soil moisture content and growth response of Lychnis cognata according to the types of organic mulching materials. The experimental group consisted of a control group that did not use mulching material (Cont.) and a total of five treatment groups, including cocochip (C.O), woodchip (W.O), straw (S.T), and sawdust (S.A), depending on the mulching material. The soil moisture content according to the type of organic mulching material was high in the order of W.O > S.T > Cont. > C.O > S.A, and there was a significant difference especially in S.A. The plant height showed good growth in the order of S.T > Cont. > C.O > W.O > S.A, and there was no significant difference by mulching materials in other growth items except for plant height. Both the chlorophyll and plant water contents were superior to those of untreated group, so the treatment of organic mulching materials is considered to be effective in maintaining the chlorophyll and plant water contents of Lychnis cognata. In particular, the soil moisture content was affected by the characteristics of the mulching material itself. Based on these results, it is required to use a mulching material suitable for the characteristics of each plant in extensive green roof system and it is considered that this can be overcome through organic mulching when selecting a plant species that is weak to water stress.

Effect of Capillary Barrier on Soil Salinity and Corn Growth at Saemangeum Reclaimed Tidal Land

  • Lee, Sanghun;Lee, Su-Hwan;Bae, Hui-Su;Lee, Jang-Hee;Oh, Yang-Yul;Noh, Tae-Hwan;Lee, Geon-Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.398-405
    • /
    • 2014
  • Salt accumulation at soil surface is one of the most detrimental factors for crop production in reclaimed tidal land. This study was conducted to investigate the effect of capillary barriers beneath the soil surface on dynamics of soil salts at coarse-textured reclaimed tidal land. A field experiment was conducted at Saemangeum reclaimed tidal land for two years (2012-2013). Capillary barriers ($3.5{\times}12m$) were treated with crushed-stone, oyster shell waste, coal briquette ash, coal bottom ash, rice hull and woodchip at 40-60 cm depth from soil surface. Silage corn (Zea mays) was cultivated during the experimental period and soil salinity was monitored periodically. Soil salinity was significantly reduced with capillary barrier compared to that of control. Oyster shell waste was one of the most effective capillary barrier materials to control soil salinity at Saemangeum reclaimed tidal land. At the first growing season capillary barrier did not influence on corn growth regardless of types of the material, but plant biomass and withering rate of corn were significantly improved with capillary barrier at the second growing season. The results of this study showed that capillary barrier was effective on the control of soil salinity and improvement of corn growth, which indicated that capillary barrier treatment can be considered one of the best management practices for stable crop production at Saemangeum reclaimed tidal land.

Characteristics of soil and eco-friendly media for improving the filterability and water quality in soil filtration (하천수질정화용 토양여과의 여과용량 증대와 수질 개선을 위한 친환경 여재 특성 비교)

  • Ki, Dong-Won;Cho, Kang-Woo;Won, Se-Yoen;Song, Kyung-Guen;Ahn, Kyu-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.453-462
    • /
    • 2010
  • Nowadays, the challenges of ensuring good water quality and quantity of river are becoming more important for human society, but there has been troublesome for purifying river water. In this study, we performed the fundamental study of a river water treatment system using riverside soil and eco-friendly optimal media for improving river water quality and can also treat a large amount of river water. As the results of the physical and chemical characterization of the two different soils (Kyungan and Chungrang, The Republic of Korea), which were collected from real stream sides in the Han River basin, and five kinds of media (zeolite, perlite, steel slag, woodchip and mulch), both soils were all classified as a sand, and effective size ($D_{10}$) and uniformity coefficient (U) of the soil were about 0.2 mm and 4 or so, respectively. Through the batch and column experiments with the soil and eco-friendly media, zeolite and mulch were found to be efficient for decreasing nitrogen. In addition, steel slag was especially superior to the other media for phosphorus removal. From soil reforming tests volume ratios were 2.8, 1, and 1 of Kyungan soil, zeolite, and steel slag hydraulic conductivity of mixed soil was increased $1.30{\times}10^{-2}$ from $2.85{\times}10^{-3}$ of Kyungan soil, and the removal efficiencies of nitrogen and phosphorus were also improved. These results show that reforming of the soil enhanced the purification of a large amount of water, and zeolite, mulch, and steel slag might be facilitated as proper functional media.

Modification of an LPG Engine Generator for Biomass Syngas Application (바이오매스 합성가스 적용을 위한 LPG 엔진발전기 개조 및 성능평가)

  • Eliezel, Habineza;Hong, Seong Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.5
    • /
    • pp.9-16
    • /
    • 2022
  • Syngas, also known as synthesis gas, synthetic gas, or producer gas, is a combustible gas mixture generated when organic material (biomass) is heated in a gasifier with a limited airflow at a high temperature and elevated pressure. The present research was aimed at modifying the existing LPG engine generator for fully operated syngas. During this study, the designed gasifier-powered woodchip biomass was used for syngas production to generate power. A 6.0 kW LPG engine generator was modified and tested for operation on syngas. In the experiments, syngas and LPG fuels were tested as test fuels. For syngas production, 3 kg of dry woodchips were fed and burnt into the designed downdraft gasifier. The gasifier was connected to a blower coupled with a slider to help the air supply and control the ignition. The convection cooling system was connected to the syngas flow pipe for cooling the hot produce gas and filtering the impurities. For engine modification, a customized T-shaped flexible air/fuel mixture control device was designed for adjusting the correct stoichiometric air-fuel ratio ranging between 1:1.1 and 1.3 to match the combustion needs of the engine. The composition of produced syngas was analyzed using a gas analyzer and its composition was; 13~15 %, 10.2~13 %, 4.1~4.5 %, and 11.9~14.6 % for CO, H2, CH4, and CO2 respectively with a heating value range of 4.12~5.01 MJ/Nm3. The maximum peak power output generated from syngas and LPG was recorded using a clamp-on power meter and found to be 3,689 watts and 5,001 watts, respectively. The results found from the experiment show that the LPG engine generator operated on syngas can be adopted with a de-ration rate of 73.78 % compared to its regular operating fuel.

Investigating the Cause of Ash Deposition and Equipment Failure in Wood Chip-Fueled Cogeneration Plant (우드칩을 연료로 하는 열병합발전소의 회분 퇴적 및 설비 고장 원인 분석)

  • Min Ji Song;Woo Cheol Kim;Heesan Kim;Jung-Gu Kim;Soo Yeol Lee
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.187-192
    • /
    • 2023
  • The use of biomass is increasing as a response to the convention on climate change. In Korea, a method applied to replace fossil fuels is using wood chips in a cogeneration plant. To remove air pollutants generated by burning wood chips, a selective denitrification facility (Selective catalytic reduction, SCR) is installed downstream. However, problems such as ash deposition and descaling of the equipment surface have been reported. The cause is thought to be unreacted ammonia slip caused by ammonia ions injected into the reducing agent and metal corrosion caused by an acidic environment. Element analysis confirmed that ash contained alkali metals and sulfur that could cause catalyst poisoning, leading to an increase in the size of ash particle and deposition. Measurement of the size of ash deposited inside the facility confirmed that the size of ash deposited on the catalyst was approximately three times larger than the size of generally formed ash. Therefore, it was concluded that a reduction in pore area of the catalyst by ash deposition on the surface of the catalyst could lead to a problem of increasing differential pressure in a denitrification facility.

A Study on the Plant Nutrients Impregnation Methods and Soil Covering Effects of Wood Chips (목재칩의 식물영양제 함침방법과 토양 피복효과에 관한 연구)

  • Yu Jin Hong;Dae Woo Choi;Kwon Woong Choi;Suejin Park;Seok Un Jo;Hee Jun Park
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.spc
    • /
    • pp.31-38
    • /
    • 2023
  • In this study, in order to develop a method to efficiently inject essential nutrients necessary for plant growth into wood chips, which are simply used as soil covering materials in the agriculture, landscaping and horticultural industries, the atmospheric pressure dipping method and the vacuum pressure impregnating method are used to improve the plant nutrients injectability and impregnation amount were comparatively analyzed. Nutrient ingredients and 8 major heavy metal contents of wood chips injected with nutrients were analyzed, and soil covering effects were examined by covering wood chips injected with nutrients on soil. Comparing the dipping method and the vacuum pressure impregnation method, it took about 48 hours or more to inject 1,500 g or more of the nutrient aqueous solution into 1 kg of wood chips in the dipping method, but the vacuum pressure impregnation method could be impregnated in about 5 minutes. Components of the impregnated nutrients were detected in proportion to the diluted concentration. As a result of covering the wood chips developed in this study on soil, they showed weakly acidic pH, and the heat insulation and moisturizing effects during the winter season were evaluated to be superior to those of uncovered soil. In the future, wood chips impregnated with nutrients are expected to contribute to the more efficient use of waste wood resources and the long-term supply of nutrients essential for plant growth, reducing excessive use of chemical fertilizers and reducing costs.

Growth Environments and Management Strategies for Pinus densiflora Village Groves in Western Gangwon Province (강원도 영서지역 소나무 마을숲의 생장환경과 관리방안)

  • Jo, Hyun-Kil;Seo, Ok-Ha;Choi, In-Hwa;Ahn, Tae-Won
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.6
    • /
    • pp.893-902
    • /
    • 2011
  • The purpose of this study was to survey structures and growth conditions of Pinus densiflora village groves, and to establish management strategies for their desirable growth and conservation. Twelve village groves were selected in western Gangwon province for the study. The age of the study groves ranged from 50 to 200 years. Average dbh (diameter at breast height) and density of trees for each study grove were 27~52cm and 0.5~9.3 trees/$100m^2$, respectively. Soil environments were favorable to Pinus densiflora growth in the majority of the study groves, but 2 study groves with sandy soils showed considerably poor nutrient contents. Low tree vitality was found in some of the study groves due to poor conditions of root growth from soil fill and trampling. There were detachment of cambial tissue and damage of stem cavity at 6 study groves, which were caused by artificial injury, careless pruning, and frost damage. Light disease damage by Rhizosphaera kalkhoffii and phomopsis blight were found at 6 study groves. Light pest damage by Thecodiplosis japonensis was also found at 6 study groves, but the pest damage at 2 study groves was relatively considerable. Thus, major factors limiting normal growth of Pinus densiflora village groves were infertility, soil fill and trampling, stem damage, and disease and pest. Desirable management strategies were explored to solve growth-related problems and to conserve the study groves. The management strategies included fertilization of organic matter and lime, removal of soil fill, soil plowing and graveling, wood-trail installation or woodchip mulching, supply of wood fences and protective frames, surgical operation for damaged stems, vitality enhancement, and trunk injection to improve growth environments or control stem damage and disease/pest.

Process development for food waste composting (음식물 쓰레기 퇴비화 공정 개발)

  • Song, Oh-Yong;Jung, Kwang-Yong;Jeong, Jun-Young;Yang, Chang-Ok
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.4
    • /
    • pp.321-326
    • /
    • 1999
  • This study was performed to evaluate the quality of produced compost and to analyse the change of a component during the reduction compost according to the input volume. The volume of pilot scale used in this study was about 300㎥. The pile of 2m width, 20m length and 1.2m height was constructed. Woodchip was used as bulking agent to enhance pore volume of composting bay and to control water content of food waste in starting time. Food waste was turned using a mechanical tumer twice a day. The result are as follows : In these cases of input volume of $2m^3$ and $3.5m^3$, temperature of composting pile was maintained over $60^{\circ}C$ and water content was 43.6% and 47.2%, respectively. It was proved that microorganisms activity was maintained high in each input volume. After operation of step 1 and step 2, pH and organic matter in the final compost were 6.2, 6.6 and 84.3%, 79.6%, respectively. Cation concentration such as $K_2O,$ CaO and NaCl was accumulated in the compost during the composting period. NaCl concentration in the final compost was 4.62%, 4.92%, respectively. Hence, If was recommended that this compost should be applied to others expect agricultural area or mixed with a low concentration other compost. In the steps 1, input volume of $2m^3$, heavy metal concentration of Pb, Cu, Cr, Ni. Cd were 37.82㎎/㎏, 56.87㎎/㎏, 9.8㎎/㎏. 22.21㎎/㎏ and 3.69㎎/㎏, and 44.55㎎/㎏, 95.54㎎/㎏, 12.22㎎/㎏, 24.94㎎/㎏, and 3.86㎎/㎏ in the step 2.

  • PDF