• 제목/요약/키워드: Wood-biomass

검색결과 406건 처리시간 0.027초

폭쇄법(爆碎法)을 이용(利用)한 목질계(木質系) biomass의 종합적(綜合的) 이용(利用)(II) -폭쇄재(爆碎材)로부터 Carboxymethyl cellulose의 제조(製造)- (Total Utilization of Woody Biomass by Steam Explosion(II) -The Preparation of Carboxymethylcellulose from Exploded Wood-)

  • 한상열;장준복;이종윤
    • Journal of the Korean Wood Science and Technology
    • /
    • 제22권2호
    • /
    • pp.30-36
    • /
    • 1994
  • Steam explosion process is one of the most efficient, pretreatment method for the utilization of lignocellulosic biomass. The carbxymethyl-cellulose(CMC) was prepared with steam exploded wood(EXW), pine(Pinus densiflora) and oak(Quercus mongolica), by standard method using isopropyl alcohol and monochloroacetic acid. The range of water solubility of carboxymethylated pine exploded wood was 45.2~66.8 % and those of oak was 60.7~84.7 %. The degree of substitution(D.S) of carboxymethylated pine exploded wood was 0.11~0.33 and oak exploded wood was 0.48~0.76. The color of carboxymethylated pine and oak exploded wood was brown-black. When carboxymethylated EXW was purified by sulfuric acid, the yield of carboxymethylated wood was lower than non-treated one. However, the color was still brown-black although after delignification. In carboxymethylated EXM prepared after delignification, the water solubility and degree of substitution(D.S) of pine were 81.4~95.9 % and 0.71~0.79, and those of oak were 76.2~89.5 % and 0.79~1.05. The values were higher than non-treated. The degree of substitution of purified carboxymethylated wood prepared with delignified EXM, pine and oak were 0.50~0.71 and 0.70~0.88. The color of carboxymethylated wood was white. In carboxymethylated wood preparde after delignification of EXM, swelling ratio and water retention value of pine were 95.9~96.5 and 580.0~751.2, those of oak were 76.2~89.5 and 124.3~307.6.

  • PDF

Effects of Dilute Acid Pretreatment on Enzyme Adsorption and Surface Morphology of Liriodendron tulipifera

  • Min, Byeong-Cheol;Koo, Bon-Wook;Gwak, Ki-Seob;Yeo, Hwan-Myeong;Choi, Joon-Weon;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권2호
    • /
    • pp.187-195
    • /
    • 2011
  • In this study, dilute acid pretreatment of $Liriodendron$ $tulipifera$ was performed for enzymatic hydrolysis. As the pretreatment temperature was increased, enzymatic hydrolysis and enzyme adsorption yield also increased. The highest enzymatic hydrolysis yield was 57% (g/g) and enzyme adsorption was 44% (g/g). Enzymatic hydrolysis yield was determined with weight loss of pretreated biomass by enzyme, and enzyme adsorption was a percentage of enzyme weight attaching on pretreated biomass compared with input enzyme weight. When $L.$ $tulipifera$ was pretreated with 1% sulfuric acid at $160^{\circ}C$ for 5 min., hemicellulose was significantly removed in pretreatment, but the lignin contents were constant. Other changes in surface morphology were detected on biomass pretreated at $160^{\circ}C$ by a field emission scanning electron microscope (FESEM). A large number of spherical shapes known as lignin droplets were observed over the entire biomass surface after pretreatment. Hemicellulose removal and morphological changes improved enzyme accessibility to cellulose by increasing cellulose exposure to enzyme. It is thus evidence that enzyme adsorption is a significant factor to understand pretreatment effectiveness.

바이오매스와 폐기물 고형연료의 연소특성 (Combustion Chracteristics of Biomass and Refuse Derived Fuel)

  • 구재회;오세천
    • 공업화학
    • /
    • 제23권5호
    • /
    • pp.456-461
    • /
    • 2012
  • 본 연구에서는 바이오매스의 에너지 활용성을 확인하기 위하여 실험실 연소로를 이용한 등온 및 비등온 연소특성 연구를 수행하였으며 바이오매스의 시료로는 목재펠렛, 볏짚 및 왕겨를 사용하였다. 바이오매스의 연소시 배출가스의 특성과 분진 및 잔류물을 분석하였으며 그 결과를 RDF의 연소실험 결과와 비교분석하였다. 등온 연소특성 실험으로부터 볏짚이 다른 시료에 비하여 연소속도가 빨라 급격히 산소량이 감소되어 불완전연소율이 증가함을 확인하였으며 목재펠렛의 경우 다른 시료에 비하여 가장 낮은 $NO_{X}$ 배출농도를 나타내었다. 또한 비등온 연소특성 실험으로부터 모든 시료가 $900^{\circ}C$의 연소온도에 도달하기 이전에 연소가 대부분 일어남을 확인할 수 있었으며 $NO_{X}$의 경우 CO가 배출되는 범위와 유사한 온도범위에서 배출되는 반면에 $SO_{2}$의 경우보다 고온에서 배출됨을 확인할 수 있었다.

Reusing the Liquid Fraction Generated from Leaching and Wet Torrefaction of Empty Fruit Bunch

  • Lee, Jae-Won;Choi, Jun-Ho;Im, Hyeon-Soo;Um, Min;Lee, Hyoung-Woo
    • Korean Chemical Engineering Research
    • /
    • 제57권3호
    • /
    • pp.372-377
    • /
    • 2019
  • Leaching ($60^{\circ}C$, 5 min) and wet torrefaction ($200^{\circ}C$, 5 min) of empty fruit bunch (EFB) were carried out to improve the fuel properties; each liquid fraction was reused for leaching and wet torrefaction, respectively. In the leaching process, potassium was effectively removed because the leaching solution contained 707.5 ppm potassium. Inorganic compounds were accumulated in the leaching solution by increasing the reuse cycle of leaching solution. The major component of the leached biomass did not differ significantly from the raw material (p-value < 0.05). Inorganic compounds in the biomass were more effectively removed by sequential leaching and wet torrefaction (61.1%) than by only the leaching process (50.1%) at the beginning of the liquid fraction reuse. In the sequential leaching and wet torrefaction, the main hydrolysate component was xylose (2.36~4.17 g/L). This implied that hemicellulose was degraded during wet torrefaction. As in the leaching process, potassium was effectively removed and the concentration was accumulated by increasing the reuse cycle of wet torrefaction hydrolysates. There was no significant change in the chemical composition of wet torrefied biomass, which implied that fuel properties of biomass were constantly maintained by the reuse (four times) of the liquid fraction generated from leaching and wet torrefaction.

Estimation of unused forest biomass potential resource amount in Korea

  • Sangho Yun;Sung-Min Choi;Joon-Woo Lee;Sung-Min Park
    • 농업과학연구
    • /
    • 제49권2호
    • /
    • pp.317-330
    • /
    • 2022
  • Recently, the policy regarding climate change in Korea and overseas has been to promote the utilization of forest biomass to achieve net zero emissions. In addition, with the implementation of the unused forest biomass system in 2018, the size of the Korean market for manufacturing wood pellets and wood chips using unused forest biomass is rapidly expanding. Therefore, it is necessary to estimate the total amount of unused forest biomass that can be used as an energy source and to identify the capacity that can be continuously produced annually. In this study, we estimated the actual forest area that can be produced of logging residue and the potential amount of unused forest biomass resources based on GT (green ton). Using a forest functions classification map (1 : 25,000), 5th digital forest type map (1 : 25,000), and digital elevation model (DEM), the forest area with a slope of 30° or less and mountain ridges of 70% or less was estimated based on production forest and IV age class or more. The total forest area where unused forest biomass can be produced was estimated to be 1,453,047 ha. Based on GT, the total amount of unused forest biomass potential resources in Korea was estimated to be 117,741,436 tons. By forest type, coniferous forests were estimated to be 48,513,580 tons (41.2%), broad-leaved forests 27,419,391 tons (23.3%), and mixed forests 41,808,465 tons (35.5%). Data from this research analysis can be used as basic data to estimate commercial use of unused forest biomass.

Comparative study of individual and co-application of biochar and wood vinegar on growth of perilla (Perilla frutescens var.) and soil quality

  • Yun-Gu Kang;Nam-Ho Kim;Jun-Ho Kim;Da-Hee Ko;Jae-Han Lee;Jin-Hyuk Chun;Taek-Keun Oh
    • 농업과학연구
    • /
    • 제49권2호
    • /
    • pp.357-366
    • /
    • 2022
  • Biochar can be obtained by using various types of biomass under an oxygen-limited condition. Biochar can be utilized for various applications such as soil improvement, waste management, growth promotion, and adsorption. Wood vinegar is produced by the process of pyrolysis wood biomass and is used as a growth promoter, for soil improvement, and as a feed additive. When wood vinegar is treated on soil, it acts to control soil pH, improve nutrient availability, and alleviate N2O and NH3 volatilization. The objective of this study was to evaluate the effect of biochar and wood vinegar on the growth of perilla and soil quality. The experiment was conducted by using a Wagner pot (1·5,000 a-1) in a glass greenhouse. The biochar was produced by pyrolysis at 450℃ for 30 minutes using rice husk and rice straw. Wood vinegar was diluted to 1 : 500 (v·v-1) and used in this experiement. In the results of a cultivation experiment, co-application of biochar and wood vinegar enhanced the growth of perilla. In particular, rice husk biochar affected the leaves of the perilla, and rice straw biochar influenced the stems of the perilla. In addition, soil quality after treatment with biochar and wood vinegar applied together was highest compared to other units. Therefore, it is anticipated that co-application of biochar and wood vinegar will be more productive and improve soil quality compared to individual utilization of biochar and wood vinegar.

산림바이오매스에너지에 관한 과학적 근거에 따른 통설적 접근 (Forest Biomass Utilization for Energy Based on Scientifically Grounded and Orthodox)

  • 이승록;한규성
    • 신재생에너지
    • /
    • 제20권1호
    • /
    • pp.145-174
    • /
    • 2024
  • Addressing climate change necessitates evidence-based policies grounded in science. The use of forest biomass for energy production is based on a broad scientific consensus at the international level. However, some environmental groups in South Korea are opposing this system of energy production. Through this study, the authors aim to reduce unnecessary confusion and foster an atmosphere conducive to meaningful evidence-based policies. We have classified the issue into eight categories: biological carbon cycle, carbon debt, nature-based solutions, air emissions, cascading principles and sustainability certification, forest environmental impacts, climate change litigation, and the behavior of environmental groups and public perception. Consequently, the following key points were derived: (1) the actions of some environmental groups seem to follow a similar pattern to denialist behavior that denies climate change and climate science; (2) the quality of evidence for campaigns that oppose the use of forest biomass for energy production is low, with a tendency to overgeneralize information, high uncertainty, and difficulty in finding new claims.; (3) most of the public believes that forest biomass energy is necessary, and the governments of major countries are aware of its importance. Significantly, Forest biomass for energy is based on an overwhelming level of scientific consensus recognized internationally.

바이오매스 부존특성을 고려한 농촌지역 바이오에너지 보급전략 (Strategic Planning for Bioenergy Considering Biomass Availability in Rural Area)

  • 홍성구
    • 한국농공학회논문집
    • /
    • 제50권4호
    • /
    • pp.51-58
    • /
    • 2008
  • Unit costs for energy production in bioenergy facilities are dependent upon both fixed cost for facility construction and operational costs including biomass feedstock supply. With the increase of capacity, unit fixed cost could be decreased while supply cost tends to increase due to the longer transportation distance. It is desirable to take into account biomass availability in planning bioenergy facilities. A cumulative curve relationship was proposed to relate biomass availability and cumulative products of biomass amount and transportation distance. Optimum size of gasification facilities was affected by collection cost, biomass cumulative relationship. Based on biomass availability of Icheon-City, optimum sizes were about $400kW_{th}$ for gas production, and about $200kW_{el}$ for power generation. Unit cost of bioenergy production could be substantially reduced by reducing collection cost through supplying biomass from diverse sources including land development areas where significant amount of waste wood is generated. When planning bioenergy facilities, however, biomass availability and spatial distribution are key factors in determining the size of capacity.

미국 에너지 시장에 공급되는 바이오에너지에 관한 연구 (III) - 바이오매스를 이용한 에탄올 생산과 원료공급에 대하여 - (Biomass Energy in the USA: A Literature Review (III) - Bioethanol production from Biomass and Feedstock Supply -)

  • 김영숙
    • Journal of the Korean Wood Science and Technology
    • /
    • 제35권1호
    • /
    • pp.1-10
    • /
    • 2007
  • 최근 미국 에너지 시장에서 수송용 바이오연료 생산과 바이오매스자원으로부터의 원료공급 가능성 등에 대하여 조사 연구되었다. 미국의 국가에너지정책의 1차 목표는 수입원유에 대한 의존을 줄이고 다양한 국내자원으로 에너지생산을 증가시키는 것으로 2030년에는 현재 수송용 에너지의 20%를 바이오연료로 대체할 목표이다. 정책적으로 청정공기법령(Clean Air Act), 연방청정연료(Federal Clean Fuel) 프로그램 및 American Jobs Creation Act를 통하여 바이오연료 사용을 증가시키는 노력을 하고 있다. 에너지 원료로서 산림바이오매스는 년간 3억 6800만 dry tons, 농업에서 얻어지는 원료는 현재의 BT기술을 이용한 작물품종 및 경작기술 개발, 농지사용 변화를 기반으로 했을 때 년 간 총 9억 9800만 dry tons이고 이중에서 목질계 바이오매스는 8억 1800만 dry tons이다 현재의 농업상황에서 생산되는 량의 5배에 해당하는 바이오매스 공급가능성이 예측되었다.

백합나무의 상대생장식 및 현존량 확장계수 (Allometric Equations and Biomass Expansion of Yellow Poplar(Liriodendron tulipifera) in Southern Korea)

  • 강민선;장경수;손영모;김래현;박인협;이계한
    • 한국산림과학회지
    • /
    • 제105권4호
    • /
    • pp.463-471
    • /
    • 2016
  • 백합나무(Liriodendron tulipifera L.)의 자원량 파악 및 바이오매스 통계자료 구축을 위해 줄기밀도, 바이오매스 확장계수, 뿌리함량비를 구하였으며, 흉고직경과 수고를 이용한 상대생장식을 개발하였다. 이를 위해 지역과 경급을 고려하여 총 40본의 표본목을 벌채하였고 21본은 뿌리까지 굴취 하였다. 본 연구 결과에 의하면 백합나무의 줄기밀도는 $0.43g{\cdot}cm^{-3}$, 바이오매스 확장계수는 1.2, 뿌리함량비는 0.2이며, 각각의 불확실성은 3.9%, 4.6%, 24.1% 이었다. 백합나무 지상부 상대생장식은 $W=0.060D^{2.524}$이었고, 전체 바이오매스 및 지하부 상대생장식은 각각 $W=0.063D^{2.578}$, $W=0.010D^{2.591}$이었다.