• Title/Summary/Keyword: Wood products manufacturing

Search Result 97, Processing Time 0.021 seconds

Manufacturing of Korean Paper(Hanji) with Indian Mallow (Abutilon avicennae Gaertner) as the Alternative Fiber Resources(I) - Productivity and Pulping Characteristics of Indian Mallow - (대용섬유자원으로써 어저귀를 이용한 한지제조(제1보) - 어저귀의 건물 생산량 및 펄프화 특성 -)

  • Jeong, Seon-Hwa;Cho, Nam-Seok;Choi, Tae-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.144-150
    • /
    • 2002
  • Indian mallow is characterized by the rapid growth and high harvest of the fibrous materials. This study was carried out to investigate the sheet properties of Hanji using Indian mallow, made by different pulping methods, such as alkali and sulfomethylated pulpings and different stock compositions, various mixing ratios of bast fiber, woody core and whole stalk fibers. The results from this study were summarized as follows. The length and width of the bast fibers were 1.40-430 mm(av. 235 mm), and 9.2-26.4 ㎛(av.18.3 ㎛), respectively. The cell wall thickness was 4.0-115 ㎛(av. 7.7 ㎛). Runkel ratio, flexibility coefficient and fiber length/fiber width ratio were 1.38, 0.42 and 128 respectively. Bast fiber and whole stalk were cooked by alkali and sulfomethylated methods. Sulfomethylated pulping resulted in superior pulp in terms of yield and quality as compared with those of alkali pulping. The pulp yields of bast fiber was higher than those of whole stalk

A Study on Improvement in Quality of the Paper Packaging Material and Structure -Focusing on EPR Items- (종이팩의 재질·구조 개선을 위한 연구 -EPR 대상 품목을 중심으로-)

  • Song, Kihyeon;Ko, Euisuk;Cho, Soohyun;Kwon, Ohcheol;Kim, Jaineung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.21 no.1
    • /
    • pp.19-26
    • /
    • 2015
  • The carton for liquid products are divided into 'gable top carton' and 'aseptic carton'. Currently, these packages are being recycled in the toilet tissue manufacturing process. The recycling of the carton aluminium laminate is the most important problem facing the recycling procedure of the carton packages due to the reduction in quality of recycled materials. The polymer structure with synthetic resins being used mainly in beverage packaging is also one of the important factors for the procedure for its recycling. The objective of this study was to investigate the package material and structure of the carton for liquid products through marketing research and suggest the supplementation in the work processes of production, use, and recycling. The results represent to improve the recycling profit and the quality of recycled materials when a laminated aluminium of carton for liquid products is replaced to the transparent polymer film. The improvement of the sorting and recycling process may help their recycling efficiencies. In addition, the limited use of synthetic resin molded packaging and increase of wood-pulp collection rate will provide the improvement of the recycling profit and the quality of recycled materials.

  • PDF

Feasibility of Manufacturing Desk and Chair with Curved Veneer Lamination (단판 적층성형 학생용 책상.의자의 제조적성)

  • Suh, Jin-Suk;Park, Jong-Young;Han, Ki-Man
    • Journal of the Korea Furniture Society
    • /
    • v.16 no.2 s.30
    • /
    • pp.59-65
    • /
    • 2005
  • As physical condition of students improves, there is a need to develop human body-friendly desk and chair for students. In this study, desks and chairs were manufactured with curved veneer lamination under high frequency heating and pressing, using ten wood species such as Japanese red pine, Korean pine, pitch pine, Japanese larch, yellow poplar, black locust, oak, radiata pine, beech, and birch. The performance of these products were evaluated. The results obtained were summarized as follows; With high frequency heating, the turned lamination of veneers with full size sheet ($3{\times}6\;feet$) prepared by rotary lathe peeling was successfully applied for making the members of desk top, leg frames of desk and chair. Bending strengths of desk tops were relatively greater for yellow poplar, black locust and red pine, which were similar to those of beech and birch. Bending strengths of desk legs were classified into greater species group (red pine, yellow poplar, larch) and lower species group (radiata pine, Korean pine, pitch pine). Compressive strengths of chair legs in parallel direction to the lamination were greater in black locust and larch. On the other hand, differences between outer and inner gap at the top and drawer bottom of desk top were rather larger for the laminations of birch and beech, and less for those of yellow poplar and pitch pine, showing greater stability of open drawer space. In results, yellow poplar, larch, pitch pine and red pine showed good appearance and strength properties at the curved veneer lamination. Accordingly, it was believed that these domestic woods were able to substitute for birch which was being imported for the use of veneer-laminates type furniture.

  • PDF

Manufacture of Biodegradable Polymer with Wastepaper(I) - Pretreatment and Analysis of Chemical Components On Wastepaper - (폐지를 이용한 생분해성 고분자의 제조(I) - 폐지의 화학적 조성 분석 및 전처리 -)

  • Kwon, Ki-Hun;Lim, Bu-Kug;Yang, Jae-Kyung;Chang, Jun-Pok;Lee, Jong-Yoon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.34-41
    • /
    • 2000
  • Recently many scientists have tried to synthesize biodegradable polymers due to durable and non-biodegradable products of conventional synthetic plastics when these were wasted in nature. So to reuse the wastepapers for biodegradable polymer resources, ONP (old newsprint), OCC (old corrugated containerbpard) were carried out by the pretreatment of chlorinite, hypochlorite and oxygen-alkali treatment conditions. For manufacturing of biodegradable polymer with wastepaper, this study performed to investigate change of chemical components and optimal pretreatment condition. The summarized results in this study were as follows: Lignin content in ONP and OCC was was higher than in MOW and ash content was the highest in MOW. More amount of ash components were reduced by wet defiberation than by dry defiberation. Wet defiberation fiber are better than dry defiberated fiber in chemical pretreatment condition for wastepapers, and the best result was obtained in the condition of sodium chlorite at $70^{\circ}C$, because it has high delignification ratio, ${\alpha}$-cellulose contents and degree of polymerization in this treatment condition. Oxygen-alkali treatment condition is the worst method because of low yield, low degree of polymerization in this pretreatments.

  • PDF

Adhesion Performance of Plywoods Prepared with Different Layering Methods of Thermoplastic Resin Films (열가소성수지 필름의 적층방법에 따른 합판의 접착성능)

  • Kang, Eunchang;Lee, Sang-Min;Park, Jong-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.559-571
    • /
    • 2017
  • This study was conducted to determine the adhesive performances of plywoods affected by layering direction and the amounts of thermoplastic films. The face and back layers of veneer were hardwood species (Mixed light hardwood) and core layer veneer was radiata pine (Pinus radiata D. Don). Thermoplastic film used as adhesive were polypropylene (PP) film and polyethylene (PE) film. Thermal analysis and tensile strength were investigated on each films. As a result, the melting temperature of PP and PE films were $163.4^{\circ}C$ and $109.7^{\circ}C$, respectively, and the crystallization temperature were $98.9^{\circ}C$ and $93.6^{\circ}C$, respectively. Tensile strength and elongation of each films appeared higher on the width direction than length direction. Considering the characteristics of the thermoplastic films, the test for the amount of film used was carried out by layering film to the target thickness on veneer. The effecting of layering direction of film on plywood manufacturing was conducted by laminating in the length and width directions of the film according to the grain direction of veneer. Tensile-shear strength of plywood in wet condition was satisfied with the quality standard (0.7 MPa) of KS F 3101 when the film was used over 0.05 mm of PP film and over 0.10 mm of PE film. Tensile-shear strength of plywood after cyclic boiling exceeded the KS standard when PP film was used 0.20 mm thickness. Furthermore, higher bonding strength was observed on a plywood made with width direction of film according to grain direction of veneer than that of length direction of film. Based on microscopic analysis of the surface and bonding line of plywood, interlocking between veneers by penetration of a thermoplastic film into inner and cracks were observed.

Techniques and Traditional Knowledge of the Korean Onggi Potter (옹기장인의 옹기제작기술과 전통지식)

  • Kim, Jae-Ho
    • Korean Journal of Heritage: History & Science
    • /
    • v.48 no.2
    • /
    • pp.142-157
    • /
    • 2015
  • This study examines how traditional knowledge functions in the specific techniques to make pottery in terms of the traditional knowledge on the pottery techniques of Onggi potters. It focuses on how traditional pottery manufacturing skills are categorized and what aspects are observed with regard to the techniques. The pottery manufacturing process is divided into the preparation step of raw material, the molding step of pottery, and the final plasticity step. Each step involves unique traditional knowledge. The preparation step mainly comprises the knowledge on different kinds of mud. The knowledge is about the colors and properties of mud, the information on the regional distribution of quality mud, and the techniques to optimize mud for pottery manufacturing. The molding step mainly involves the structure and shape of spinning wheels, the techniques to accumulate mud, ways to use different kinds of tools, the techniques to dry processed pottery. The plasticity step involves the knowledge on kilns and the scheme to build kilns, the skills to stack pottery inside of the kilns, the knowledge on firewood and efficient ways of wood burning, the discrimination of different kinds of fire and the techniques to stoke the kilns. These different kinds of knowledge may be roughly divided into three categories : the preparation of raw material, molding, and plasticity. They are closely connected with one another, which is because it becomes difficult to manufacture quality pottery even with only one incorrect factor. The contents of knowledge involved in the manufacturing process of pottery focused are mainly about raw material, color, shape, distribution aspect, fusion point, durability, physical property, etc, which are all about science. They are rather obtained through the experimental learning process of apprenticeship, not through the official education. It is not easy to categorize the knowledge involved. Most of the knowledge can be understood in the category of ethnoscience. In terms of the UNESCO world heritage of intangible cultural assets, the knowledge is mainly about 'the knowledge on nature and universe'. Unique knowledge and skills are, however, identified in the molding step. They can be referred to 'body techniques', which unify the physical stance of potters, tools they employ, and the conceived pottery. Potters themselves find it difficult to articulate the knowledge. In case stated, it cannot be easily understood without the experience and knowledge on the field. From the preparation of raw material to the complete products, the techniques and traditional knowledge involved in the process of manufacturing pottery are closely connected, employing numerous categories and levels. Such an aspect can be referred to as a 'techniques chain'. Here the techniques mean not only the scientific techniques but also, in addition to the skills, the knowledge of various techniques and levels including habitual, unconscious behaviors of potters.

Evaluation of incremental sheet forming characteristics for 3D-structured aluminum sheet - part 2 (3D 구조 알루미늄 판재의 점진판재성형 특성 평가 (제2보))

  • Kim, Young-Suk;Do, Van-Cuong;Ahn, Dae-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1585-1593
    • /
    • 2015
  • 3D-structured (embossed) aluminum sheets have been used in the heat insulation purpose for automative exhaust parts because of increasing their surface areas and stiffness reinforcement imposed in making the embossing pattern. However, there are many restrictions in press forming of the embossed sheet compared with the flat sheet (non-embossed one) because of its difference in the mechanical properties and the geometrical 3-dimensional shape. In this paper we investigated the deformation characteristic of embossed aluminum sheet in the incremental sheet forming process which has frequently used in the design verification and the trial manufacturing of sheet products. The single point incremental forming (SPIF) experiments for the rectangular cone forming using the CNC machine with a chemical wood-machined die and a circular tool shape showed that the formability of the embossed sheet are better than that of the flat sheet in view of the maximum angle of cone forming. This comes from the fact that the embossed sheet between the tool and the elastic die wall is plastically compressed and the flatted area contributes to increase the plastic deformation. Also the tool path along the outward movement from the center showed a better formability than that of the inward movement from the edge. However the surface quality for the tool path along the outward movement evaluated from the surface deflection is inferior than that of the tool path along the inward movement.