• 제목/요약/키워드: Wood charcoal

Search Result 141, Processing Time 0.026 seconds

Adsorption Characteristics of Charcoals of Major Korean Wood Species and Wood-based Materials (국산 주요 수종 및 목질재료 탄화물의 흡착 특성)

  • Kong, Seog-Woo;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.33-40
    • /
    • 2002
  • This research was to investigate the adsorption characteristics of charcoals of major Korean wood species (thinned trees) and wood-based materials. As carbonization time and temperature increased, methylene-blue adsorption (MBA) of charcoals of thinned trees and wood-based materials increased. Pinus koraiensis charcoal showed the highest MBA. MBA of softwoods was higher than that of hardwoods. There was a negative correlation between air-dried specific gravity before carbonization and MBA of carbonized thinned trees. The MBA of wood-based materials showed similar value, but wood-based materials in MBA was lower than thinned woods. Surface area and total pore volume of thinned trees and wood-based materials increased as carbonization temperature increased. The species showing highest MBA appeared to have the highest surface area at the carbonization temperature of 600℃ as well. There was a positive correlation between surface area, total pore volume and MBA of charcoals. The charcoal of wood-based materials generally exhibited micro pores.

The Effect of Treatment of Woody Charred Materials on the Growth and Components of Tomato and Chinese Cabbage (목질탄화물의 처리가 토마토와 배추의 생육 및 체내성분에 미치는 영향)

  • Jeong, Soon-Jae;Oh, Ju-Sung;Seok, Woon-Young;Cho, Mi-Yong
    • Korean Journal of Organic Agriculture
    • /
    • v.16 no.4
    • /
    • pp.455-469
    • /
    • 2008
  • A research was conducted to investigate the effect of treatment of woody charred materials such as wood vinegar, charcoal, and mixture of wood vinegar and charcoal on the growth and components of tomato and chinese cabbage. The effect of treatment of woody charred materials on the growth and components of tomato the research findings are as follows. The total number of soil microorganisms increased in the groups treated with woody charred materials compared with the control. The fruit number, fruit length, fruit diameter, fruit weight, hardness and sugar contents of tomato did not show significant difference in all plots treated with woody charred materials, but the plot treated with wood vinegar + charcoal showed relatively higher values in general. Vitamin C contents were shown higher in the plots treated with woody charred materials than the control, and among the treatment plots. The effect of treatment of woody charred materials on the growth and components of chinese cabbage the research findings are as follows. The soil chemical components did not change before and after the treatment of woody charred materials. The total number of soil microorganisms increased in the treatment plots compared with the control, The leaf length, leaf width, inner leaf number, plant weight, and head weight of Chinese cabbage treated with woody charred materials were in general larger than the control. Among the treatment plots, the plot treated with wood vinegar + charcoal showed slightly higher values. The contents of minerals in chinese cabbage such as Ca, Fe, K, Mg and Mn were higher in the treatment plots than the control.

  • PDF

Studies on the Catalytic Pyrolysis Products of Hardwood (활엽수재(闊葉樹材)의 촉매적(触媒的) 열분해(熱分解) 생성물(生成物)에 관한 연구(硏究))

  • Min, Du Sik;Lee, Jong Goun
    • Journal of Korean Society of Forest Science
    • /
    • v.65 no.1
    • /
    • pp.12-23
    • /
    • 1984
  • This study was carried out to investigate on the catalytic pyrolysis products of hardwood (Alnus hirsuta (Spach) Rupr. Quercus acutissima Carruters, Robinia pseudoacacia L., and Populus tomentaglandulosa T. Lee) and comparing the rate of catalytic pyrolysis from untreated wood (ordinary wood) with that of treated wood with catalizer (Ammonium phosphate, Ammonium sulfate, Ammonium chloride and Urea). The results were summerized as follows; 1) It is the Populus tomentiglandulosa T. Lee that the species has the most content of holocellulose and pentosan. And Populus tomentiglandulosa exhibited high yield of the distillate in pyrolysis products by Ammonium phosphate with catalizer. 2) The distillate of pyrolysis products is decreased in accordance with increasing catalytic concentration. And untreated wood (ordinary wood) with catalizer has the most distillate of pyrolysis products. 3) The yield of charcoal in pyrolysis products is increased in accordance with increasing catalytic concentration and lignin content of species. 4) The caloric values of charcoal in pyrolysis products is decreased with increasing catalytic concentration. And untreated wood (ordinary wood) with catalizer had the most caloric values, but the caloric values of charcoal did not show statistically significent difference at 5% levels in catalizer.

  • PDF

Ethylene Gas Adsorption of Clay-Woodceramics from 3 layers-clay-woodparticleboard

  • Lee, Hwa Hyoung;Kang, Seog-Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.83-88
    • /
    • 2003
  • The woodceramics are porous amorphous carbon and glassy carbon composite materials. Woodceramics attracted a lot of attention in recent years because they are environmentally friendly and because of their unique functional characteristics such as catalysis, moisture absorption, deodorization, purification, carrier for microbial activity, specific stiffness, corrosion and friction resistance, and their electromagnetic shielding capacity. In this paper, we made new products of clay-woodceramics to investigate the industrial analysis and ethylene gas adsorption for basic data of building- and packging- materials keeping fruit fresh for a long time. Clay-woodceramics were carbonized for 3 h of heating in a special furnace under a gas flow of nitrogen(15 ml/min.) from 3 layers-clay-woodparticleboard made from pallet waste wood, phenol- formaldehyde resin(hereafter PF, Non volatile content:52%, resin content 30%), and clay(10%, 20% and 30%). Carbonization temperature was 400℃, 600℃ and 800℃. Experimental results shows that the higher the carbonization temperature, the higher the fixed carbon and the lower the volatile contents. The higher the clay content, the more the ash content. The higher the carbonization temperature, the more the ethylene gas adsorption. Carbonization temperature of 800℃ gave the best reslts as same as that of white charcoal and activated carbon.(800℃-clay-woodceramic: 5.36 ppm, white charcoal: 5.66 ppm, activated carbon: 5.79 ppm) The clay contents did not make difference of ethylene gas adsoption.

Initial Ignition Time and Calorific Value Enhancement of Briquette with Added Pine Resin

  • Gustan PARI;Lisna EFIYANTI;Saptadi DARMAWAN;Nur Adi SAPUTRA;Djeni HENDRA;Joseph ADAM;Alfred INKRIWANG;Rachman EFFENDI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.207-221
    • /
    • 2023
  • The increasing demand for clean energy requires considerable effort to find alternative energy sources, such as briquettes. This research aims to develop a charcoal briquette with added pine resin (API) that has excellent combustion speed and distinctive aroma. Briquettes are composed of charcoal, pine resin (concentration: 0%-30%), and starch (up to 7%). They are produced in several stages, including coconut shell pyrolysis in conventional combustion, to obtain charcoal for the briquette precursor. Briquette compaction is conducted by mixing and densifying the charcoal, pine resin, and starch using a hydraulic press for 3 min. The hydraulic press has a total surface area and diameter of 57.7 cm2 and 3.5 cm, respectively. The briquettes are dried at different temperatures, reaching 70℃ for 24 h. The study results show that the briquettes have a thickness and diameter of up to 2 and 3.5 cm, respectively; moisture of 2.18%-2.62%; ash of 11.61%-13.98%; volatile matter of 27.15%-51.74%; and fixed carbon content of 40.24%-59.46%. The compressive strength of the briquettes is 186-540 kg/cm2. Their calorific value is 5,338-6,120 kcal/kg, combusting at a high speed of 0.15-0.40 s. The methoxy naphthalene, phenol, benzopyrrole, and lauryl alcohol; ocimene, valencene, and cembrene are found in the API. The API briquette has several chemical compounds, such as musk ambrette, ocimene, sabinene, limonene, 1-(p-cumenyl) adamantane, butane, and propanal, which improve aroma, drug application, and fuel production. Accordingly, API briquettes have considerable potential as an alternative energy source and a health improvement product.

Utilization of Charcoal as an Environmentally Friendly Building Materials (II) - A Study on the Energy Saving and Sound Insulation Characteristics of Building Materials Prepared with Charcoal - (목탄을 이용한 친환경 건축자재 이용기술(II) - 목탄 함유 건축자재의 에너지 절감 및 차음 특성에 관한 연구)

  • Ahn, Byoung-Jun;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.41-52
    • /
    • 2011
  • This study was carried out to investigate the effect of energy saving and sound insulation of building materials mixed with charcoal. To investigate the functionality of building based on the difference of construction materials, three different experimental buildings were constructed. They were buildings built with the conventional construction materials (A), the charcoal construction materials (B), and the charcoal-sericite construction materials (C). The study showed that energy consumption could be reduced approximately 9.5% and 14.5% by replacing A with B and C, respectively. Especially, it is revealed that the lower outdoor temperature was, the higher energy saving effect was. Also, after shutoff the boiler switch the decrease rate of room temperature of the one using B was lower than those of others using A and C so that the room temperature at the building using B was higher by $3.5{\sim}4.2^{\circ}C$ in the 1 meter air above the ground and by $4.4{\sim}5.4^{\circ}C$ on the floor surface after 12 hours passed. In the building noise test the heavy-and light-weight impact sound of the plate, represented by criterion of noise between floors in multi-story building, tended to decrease in the test sample containing charcoal.

Bioethanol production from wood biomass hydrolysate with supercritical water treatment (초임계수 처리로 가수분해된 목질계 바이오매스를 이용한 바이오 에탄올 생산)

  • Seo, Hyeon-Beom;Han, Jae-Gun;Choi, Won-Seok;Lee, Oh-Kyu;Lee, Soo-Min;Choi, Seok-Hwan;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.494-498
    • /
    • 2008
  • We investigated the bioethanol production using wood biomass hydrolysate which obtained from the supercritical water (SCW) treatment. SCW-treated hydrolysate was used C-source of culture medium in shaking flask culture for bioethanol production. When the concentrated SCW-treated hydrolysate (SCW3) was used, yeast cell growth was slower compared with those in other SCW-treated hydrolysate (SCW1, SCW2). In addition, the bioethanol productions were 0.51 to 0.56 (%,w/v) when SCW1, SCW2, and SCW3 were used. Therefore, we removed the toxic phenolic compound in SCW-treated hydrolysate by pretreatments of activated charcoal and calcium hydroxide. Activated charcoal reduced more efficiently the phenolic compounds in SCW3 by 94.6%. Finally, when we pretreated SCW3 by activated charcoal and this was used for bioethanol production, 0.96 (%,w/v) bioethanol was produced and the ethanol yield based on reducing sugar reached 0.5.

Dimensional Change of Carbonized Woods at Low Temperatures

  • Kwon, Sung-Min;Jang, Jae-Hyuk;Kim, Nam-Hun
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.2
    • /
    • pp.226-232
    • /
    • 2014
  • To understand transition characteristics from wood to charcoal the dimensional changes of carbonized woods at low temperature from $300^{\circ}C$ to $350^{\circ}C$ at the intervals of $10^{\circ}C$ were investigated. Three species of hardwoods and two species of softwoods were used in this study. Measurements of dimensional changes of cells were observed by stereoscopic microscope and an image analyzer. The apparent volume of each specimen decreased greatly with increasing temperature. Severe cracks and collapse were observed frequently in hardwoods and hardly in softwoods. Vessel diameter and tracheid cell wall thickness of the wood samples were decreased with increasing carbonization temperature. Contraction of vessel diameter in tangential direction was greater than that in radial direction. Cell wall thickness of tracheids decreased with increasing carbonization temperature. Consequently, even though it was small range of carbonization temperature, dimensions of wood components were changed considerably.

Analysis of Thermal Interrelation by Leakage Current in Open and Closed Statues (개방 및 밀폐상태에서의 누설 전류에 대한 열적 상관관계 분석)

  • Kim, Doo-Hyun;Kim, Sung-Chul;Park, Jong-Young;Choi, Seung-Ho;Lee, Jong-Ho
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.7-12
    • /
    • 2010
  • This paper is aimed the measurement and estimation the thermal interrelation based on leakage current. The leakage models are analyzed by parameters in open and closed (Panel) states and with wood dust and rainwater, charcoal powder in leakage current occurred point. The thermal characteristic of open state that leakage current is inputted in 90 mA is higher in charcoal powder ($105^{\circ}C$) than in wood dust and rainwater ($88.8^{\circ}C$). Charcoal powder that is inputted in 110 mA shows high thermal characteristic ($238.6^{\circ}C$) and the thermal ($238.6^{\circ}C$) is caused by material strain of electrical wire insulation and Panel. The closed state in 90 mA is higher in charcoal powder ($250.6^{\circ}C$) than in wood dust and rainwater ($90.8^{\circ}C$). The open and closed state appear thermal characteristics of two times in charcoal powder than in wood dust and rainwater. The thermal data that are open and close states are used electrical fire investigation and thermal characteristic for Leakage current.

Manufacture and Properties of White Charcoal Board in Relation with Final Mat Moisture Content and Charcoal Particle Size (백탄파티클 크기와 최종매트함수율에 따른 백탄보드의 제조와 성능)

  • Lee, Hwa Hyoung;Cho, Youn Mean;Park, Han Sang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.3 s.131
    • /
    • pp.22-29
    • /
    • 2005
  • This research was carried out not only to examine the proper manufacturing condition for white charcoal board in relation to charcoal particle size and final mat moisture content (FMC), but also to maintain the advantageous properties of white charcoal as a well being building material against the sick house problem. Excellent functional white charcoal board was produced with two groups of FMC 20~25% and FMC 36~60%. The latter showed best results among tested samples in two types which are #40-60type-P15%, M5%, FMC 60% and mixed type-P15%, M5%, FMC36% with non formaldehyde adhesives [MDI (M), poly vinyl acetate emulsion (P)] and three stage pressing cycle of 30-10-$30kgf/cm^2$ (1 min.-1.5 min.-6 min.). The former gave highly acceptable results in two types which are #6 over-M15%FMC25% and mixed type-M25%FMC20%. White charcoal board gave excellent in dimensional stability, gas adsorption and far-infrared emission.