• Title/Summary/Keyword: Wood Fiber

Search Result 477, Processing Time 0.026 seconds

Effective Utilization of Hemp Fiber for Pulp and Papermaking (I) -Morphological Characteristics of Hemp Fiber- (펄프.제지용 원료로서의 삼 섬유 이용에 관한 연구(제 1보) -대마 구성 세포의 현미경적 관찰-)

  • Yoon, Seung-Lak;Lee, Myoung-Ku
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.1
    • /
    • pp.7-12
    • /
    • 2010
  • Morphological characteristics of hemp fiber were investigated using a light microscope in order to provide fundamental data for the use of hemp as a papermaking law material. Phloem of hemp is composed of cortical parenchyma cells and bast fiber with thick walls while xylem is composed of vessel, wood fiber and ray parenchyma cells. Also there are solitary pore and radial pore multiple which exist in diffuse porous pattern. Ray cells consist of uniseriate rays and thin walled ray parenchyma cells. Wood fibers are composed of three types: a large diameter fiber with longer length; a large diameter fiber with shorter length; a small diameter fiber with medium length. Vessel elements are composed of: a medium length one; a longer length one; the one whose both end walls have ligules or tails. Parenchyma cells in xylem and pit parenchyma cells have completely different size and shape. For bast fiber, the average length is about 4.4 mm and the width is about $30.5\;{\mu}m$; for vessel element, $600.0\;{\mu}m$ in length and $493.6\;{\mu}m$ in width; for wood fiber, $1000\;{\mu}m$ and $38.9\;{\mu}m$; for parenchyma cell, $50\;{\mu}m$ and $26.4\;{\mu}m$.

Physical Properties of Hybrid Boards Composed of Green Tea, Charcoals and Wood Fiber (녹차-숯-목재섬유 복합보드의 물리적 특성)

  • Park, Han-Min;Heo, Hwang-Sun;Sung, Eun-Jong;Nam, Kyeong-Han;Lim, Jae-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.406-417
    • /
    • 2012
  • In this study, eco-friendly hybrid composite boards were manufactured from green tea, three kinds of charcoals and wood fiber for developing interior materials to reinforce the functionalities such as the deodorization and the absorbability on the green tea-wood fiber hybrid boards in the previous researches. The effects of kind of raw materials and the component ratio of raw materials on dimensional stability, deodorization and emission of formaldehyde were investigated. Thickness swelling of the hybrid composite boards increased with increasing of component ratio of green tea and charcoals, but the values were markedly lower than that of Korean standard (KS) for commercial medium density fiber board (MDF), except for hybrid composite boards composed of greed tea, activated charcoal and wood fiber. Reduction rate of ammonia gas for the hybrid composite boards composed of green tea, activated charcoal and wood fiber showed a high value of 96% after 30 minute from the beginning of the test, and the other hybrid boards also showed a high value of about 95% after one hour. Emission amount of formaldehyde was similar to that of $E_0$ grade in case of using $E_1$ grade urea resin, and was similar to that of super $E_0$ grade in case of using $E_0$ grade urea resin.

Properties of Natural Dyeing of Bast Fiber(Part 2) Pre mordanting dyeing of sappan wood, gardenia and gallnut (인피섬유의 천연염색 및 염색성(제 2보) 소목, 치자, 오배자의 선매염 염색)

  • Park, Myung-Ox;Yoon, Seung-Lak
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.4
    • /
    • pp.1-14
    • /
    • 2010
  • To investigate natural dyeing properties of bast fiber, properties of pre mordanting dyeing of sappan wood, gardenia and gallnut such as K/S values, developed color, and fastness were evaluated. Silk showed the most increased K/S values by pre mordanting treatment when Fe was uses as a mordant. The optimized amount of Fe was 3%. The colors of sappan wood was a series of YR. After pre mordanting treatment with Fe, the colors of bast fiber of mulberry and silk showed a series of RP, and the color of cotton showed a series of Y. The color of gallnut was a series of Y regardless of pre mordant treatment. Sappon wood (YR), gardenia (Y), and gallnut (Y) showed various colors such as YR, R, and RP, respectively. Sunlight fastness was not improved by pre mordanting treatment. The effect of pre mordanting treatment was not good. Especially the treatment with Al showed poor sunlight fastness.

Mechanical Properties of Cellulose-filled Epoxy Hybrid Composites Reinforced with Alkali-treated Hemp Fiber (염기 처리 대마 섬유로 강화된 셀룰로오스 충전 에폭시 하이브리드 복합재의 기계적 물성)

  • Anand, P.;Anbumalar, V.
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.46-55
    • /
    • 2015
  • There is a limit for deforestation in order to keep the environmental cycle undisturbed. The heart of the paper is to replace the wood to a maximum extent to obtain a sustainable environment. This research aims at new natural composites in which treated hemp fiber used as reinforcement, synthetic cellulose used as particulate to improve the adhesion between matrix - fiber interface and Epoxy LY556 acted as matrix fabricated by hand layup technique. The density, water absorption, tensile properties, impact strength, hardness, flexural properties and compressive properties have been evaluated under ASTM standards and compare the results with existing materials such as wood, aluminium, etc., The composite hemp fiber reinforced polymer (HFRP) could be exploited as an effective replacement for wood and it would be suitable for automotive applications by comparing results.

Studies on Thickness Swelling Mechanism of Wood Particle-Polypropylene Fiber Composite by Scanning Electron Microscopy

  • Lee, Chan Ho;Cha, Jae Kyung;Eom, Young Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.48-58
    • /
    • 2002
  • This study was carried out through scanning electron microscopy to elucidate the mechanism of thickness swelling in wood particle-polypropylene composite which is a typical way of using wood and plastic materials. For this purpose, control particleboards and nonwoven web composites from wood particle and polypropylene fiber formulations of 100:0, 70:30, 60:40, and 50:50 were manufactured at target density levels of 0.5, 0.6, 0.7, and 0.8 g/cm3. Their water absorption and thickness swelling were tested according to ASTMD 1037-93 (1995). To elucidate thickness swelling mechanism of composite through the observation of morphological change of internal structures, the specimens before and after thickness swelling test by 24-hour immersion in water were used in scanning electron microscopy. From the scanning electron microscopy, thickness swelling of composite was thought to be caused by the complicated factors of degree of built-up internal stresses by mat compression and/or amount of wood particles encapsulated with molten polypropylene fibers during hot pressing. In the composites with wood particle contents of 50 to 60% at target densities of 0.5 to 0.8 g/cm3 and with wood particle content of 70% at target densities of 0.5 to 0.7 g/cm3, thickness swellings seemed to be largely dependent upon the restricted water uptake by encapsulated wood particles with molten polypropylene fibers. Thickness swelling in the composite with wood particle content of 70% at target density of 0.8 g/cm3, however, was thought to be principally dependent upon the increased springback phenomenon by built-up internal stresses of compressed mat.

Studies on Wood Quality and Growth of Quercus rubra in Korea - Anatomical Properties - (루브라참나무의 생장과 재질 - 해부학적 성질 -)

  • Han, Mu-Seok;Lee, Jin-Ri;Kim, Ji-Su;Shin, Soo-Jeong;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.421-428
    • /
    • 2015
  • This study was carried out to investigate the relationship between anatomical characteristics and growth rate of Quercus rubra from different origins of seed. Anatomical characteristics showed that all Quercus rubra species were ring-porous woods with 1~3 layers of large pores in earlywood, but the latewood had small pores oriented in radial direction. There were slight differences in libriform fiber length and vessel element diameter in the earlywood among different provenance origins of seeds. In growth rate, the libriform fiber length and vessel element diameter was negative correlation in the earlywood, but not correlative in the latewood, and vessel element length was not correlative in the early and latewood, Volumetric composition of libriform fiber and ray in latewood was higher than those in ear lywood, and a higher composition of vessel element was observed in earlywood. Ray height was the range of from 11 to 15 cells.

Microscopic Interpretation on Thickness Swelling Mechanism of Nonwoven Web Composites from Wood Particles and Polypropylene Fibers

  • Chae, Shoo-Geun;Eom, Young-Geun
    • Journal of the Korea Furniture Society
    • /
    • v.17 no.2
    • /
    • pp.9-23
    • /
    • 2006
  • Control particleboards were significantly higher in thickness swelling than wood particle-polypropylene fiber composites and their thickness swelling increased with the increase of target density. In the composites, thickness swelling did not vary significantly with the increase of target density but increased with the increase of wood particle content. And the composites with fine wood particles were significantly lower in thickness swelling than those with coarse wood particles irrespective of target density and formulation. In the scanning electron microscopy, significantly higher thickness swelling in the composites with coarse wood particles was thought to be the result of more interfacial separations by higher swelling stresses.

  • PDF

Influence of a Novel Mold Inhibitor on Mechanical Properties and Water Repellency of Bamboo Fiber-based Composites

  • Qi, Yue;Huang, Yu-Xiang;Ma, Hong-Xia;Yu, Wen-Ji;Kim, Nam-Hun;Zhang, Ya-Hui
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.336-343
    • /
    • 2019
  • Effects of a novel mold inhibitor specifically for bamboo, on the properties of composite products have been confirmed in this study. The mechanical and dimensional stability properties of bamboo fiber-based composites (BFBCs) from different bamboo species were also investigated. The results showed that Burmanica Gamble possessed the highest values of modulus of elasticity (MOE) of 33.2 GPa, modulus of rupture (MOR) of 286.9 MPa, compressive strength of 182.6 MPa and shear strength of 24.0 MPa. By contrast, Phyllostochys heterocycla among all of species showed the lowest MOE of 16.3 GPa, MOR of 170.3 MPa and compressive strength of 128.9 MPa were the lowest among all of species. Moreover, there is a remarkable variation in the swelling and water absorption between the samples with 4 h and 28 h water immersion treatment, especially Phyllostachys iridenscens. Overall, the results suggested that TCIT (Tebuconazole and 3(2H)-isothiazolone) had no significant effect on the mechanical properties compared with the control condition, and it would be utilized as an antimould of BFBCs manufacturing.

Effect of Glass Fiber-Reinforced Connection on the Horizontal Shear Strength of CLT Walls

  • JUNG, Hongju;SONG, Yojin;HONG, Soonil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.685-695
    • /
    • 2020
  • The connection performance between cross-laminated timber (CLT) walls and support has the greatest effect on the horizontal shear strength. In this study, the horizontal shear performance of CLT walls with reinforced connection systems was evaluated. The reinforcements of metal bracket connections in the CLT connection system was made by attaching glass fiber-based reinforcement to the connection zone of a CLT core lamina. Three types of glass fiber-based reinforcement were used: glass fiber sheet (GS), glass fiber cloth (GT) and fiber cloth plastic (GTS). The horizontal shear strength of the fabricated wall specimens was compared and evaluated through monotonic and cyclic tests. The test results showed that the resistance performance of the reinforced CLT walls to a horizontal load based on a monotonic test did not improve significantly. The residual and yield strengths under the cyclic loading test were 38 and 18% higher, respectively, while the ductility ratio was 38% higher than that of the unreinforced CLT wall. The glass fiber-based reinforcement of the CLT connection showed the possibility of improving the horizontal shear strength performance under a cyclic load, and presented the research direction for the application of real-scale CLT walls.

Characterization of Watermarked Hanji prepared with Non-Mulberry Mixed Fibers (대체보조섬유를 이용한 Watermark 삽입 한지의 제조)

  • Cho, Jung-Hye;Kim, Kang-Jae;Park, Seong-Bae;Kim, Chul-Hwan;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.3
    • /
    • pp.35-41
    • /
    • 2009
  • The new way of utilization of Hanji need to develop for adding high value added. An watermarked Hanji was prepared with non-mulberry mixed fibers and the properties were investigated. The mechanical properties of non-mulberry fiber mixed Hanji were very similar to mulberry fiber Hanji. The non-mulberry fiber mixed Hanji was a little brighter than original Hanji. The air permeability and pore size of the hot pepper fiber mixed Hanji were decreased depending on the content of hot pepper fiber. The printing ability of watermarked Hanji made of non-mulberry mixed fibers was higher than that of original paper mulberry Hanji. The preservation properties of non-mulberry fiber mixed watermarked Hanji were almost same as those of the original Hanji.