• Title/Summary/Keyword: Wood Biomass

Search Result 410, Processing Time 0.022 seconds

Analysis on the Trend of the Utilization of Woody Biomass - Production, supply, and practical use of woody biomass - (목질 바이오매스의 활용에 대한 동향 분석 - 목질 바이오매스의 생산·공급, 그리고 활용을 중심으로 -)

  • Ahn, Byeong-Il;Kim, Chul-Hwan;Lee, Ji-Young;Shim, Sung-Woong;Jo, Hu-Seung;Lee, Gyeong-Sun;Lee, Jee-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.32-42
    • /
    • 2012
  • Wood biomass including forest residues, waste wood, and construction residuals has been widely generated in Korea, but forest biomass from the National Forest Management Operation Project plays a big role in generating wood biomass. Unfortunately the promotion policy of woody energy organized by the Forest Service in Korea concentrates more on demand creation rather than on supply expansion. Therefore, in order to utilize insufficient wood resources effectively, it is greatly required to develop uses for maximizing their added value. In particular, more attention to the use of the second generation biomass has been paid in foreign countries because there is a threshold that the first generation biomass cannot produce enough biofuel without threatening food supplies and biodiversity. In Korea, wood pellets are regarded as the alternative clean fuels to oils and coals that emit green house gases into the atmosphere. However, using wood as pellet raw materials can not be an economic way because the value of wood disappears right after burning in the boiler in spite of its contribution to the decrease of carbon emission. Differently from wood pellets, kraft pulping process using woody biomass produces black liquor as a by-product which can be used to generate electricity, bioenergy and biochemicals through gasification. Thus, it can be more economical to make a torrefaction of lignocellulosic biomass such as low-quality wood and agricultural leftovers as raw materials of pellets.

Prediction for the quantity of wood pellet demand and optimal biomass power generation according to biomass power plant expansion and co-firing plan (바이오매스 발전설비 증설·혼소 계획에 따른 Wood pellet 소요량 예측 및 최적 바이오매스 발전량 연구)

  • kim, Sang-Seon;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.818-826
    • /
    • 2017
  • In accordance with the New and Renewable Energy Supply Statistics, biomass power generation has surged since 2013, and use of wood pellet has the most sharply increased, 696Gwh in 2013, 2,764Gwh in 2014 and 2,512Gwh in 2015. Total domestic wood pellet consumption was 1.48million tons in 2015, of which wood pellets consumed for power generation account for about 1.08million tons, about 73%. In this study, we gained the result that the wood pellet would be consumed 2.61million tons in 2020, 6.85million tons in 2025, 11.39million tons in 2030. We also calculated the optimum biomass power generation, on the premise that the power plant co-fire 50% biomass, and the result was that 2.26million tons of wood pellets should be produced domestically in 2021 to operate the present licensed wood pellet power plant from this study.

Wood pelletizing using pine root waste biomass - different pelletizing properties between trunk and root biomass of Pinus densiflora (소나무 뿌리 폐기물을 이용한 목질 펠릿 제조 - 목부와 뿌리로 제조한 펠릿의 특성 비교)

  • Shin, Soo-Jeong;Han, Gyu-Seong;Myeong, Soo-Jeong;Cho, Jung-Sik;Yeon, Ik-Jun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.71-73
    • /
    • 2008
  • Different biosolid fuel (wood pellet) properties between trunk and root of pine (Pinus densiflora) biomass were investigated. Trunk has more organic solvent extracts and Klason lignin content which has higher heating values than root biomass component. In root biomass, polysaccharides content was higher than trunk biomass. Based on Higher Heating Value (HHD) analysis and ash content, trunk biomass showed better solid fuel characteristics than root biomass. But pine root biomass had lower HHD than trunk biomass, its HHD values were higher than other hardwood or annual plant lignocellulosic biomass.

  • PDF

Production and Properties Chip Block Pallets from Teak Wood (Tectona grandis sp.) Biomass

  • Dede HERMAWAN;Alessandro Geovani DAMANIK;Sudarmanto SUDARMANTO;Deni PURNOMO;Narto NARTO;Lisman SURYANEGARA;Ismadi ISMADI;Resti MARLINA;Riska Surya NINGRUM;Sri Yustikasari MASSIJAYA;Jajang SUTIAWAN;Kenji UMEMURA;Sukma Surya KUSUMAH;Apri Heri ISWANTO
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.423-437
    • /
    • 2024
  • Wood biomass, such as sawdust, particles, and chips from the wood industry, can be potentially used as a composite product. Chip block pallets (CBP) are composite products that can be produced from industrial wood waste and are in high demand in the logistics sector. Therefore, this study aimed to investigate the production of CBP from teak wood biomass with varying polyurethane contents. In addition, this study analyzed the optimum particle-size composition was determined. The CBP production of CBP be divided into two stages. The first stage evaluated the use of polyurethane adhesive content, whereas the second stage considered the effect of particle size composition. The 9 × 9 × 9 cm3 of CBP with 0.6 g/cm3 target density was fabricated using a cold press. The National Wooden Pallet and Container Association (NWPCA) standards were used to evaluate the density, moisture content, dimensional stability, water absorption, compressive strength (CS), and screw-holding strength (SHS) of our CBP products. The mechanical and physical properties of CBP products were investigated. As a result, the CBP sample prepared using 4-14 mesh particle size and 4.5% adhesive content showed the optimal strength values, such as CS of 14.67 MPa and SHS of 371.50 N. These findings demonstrate that the CBPs derived from teak wood waste closely resemble commercial chip blocks and have the potential to replace wood bearings as pallet pads.

UK Case Study for Sustainable Forest Biomass Policy Development of South Korea (지속가능한 산림바이오매스 정책개발을 위한 영국사례 연구)

  • Lee, Seung-Rok;Han, Gyu-Seong
    • New & Renewable Energy
    • /
    • v.17 no.1
    • /
    • pp.50-60
    • /
    • 2021
  • This study investigated the reference case in the UK where legality and sustainability were systematically established for forest biomass represented by wood pellets. The UK is the country that best utilizes the trade value of wood pellets based on sustainability, with bioenergy accounting for 31% of total renewable energy production. The UK imported wood pellet, estimated 8,697 thousand tons in 2019. The UK government has continuously improved the renewable generation policy system to ensure the sustainability of wood pellets. The weighted average greenhouse gas emissions of a UK biomass power plant that received a Renewable Obligation Certificate (ROC) in 2018-19 was 26.71 gCO2e/MJ. These power plants are expected to meet the upper limit of 72.2 gCO2e/MJ by 2025. To issue an ROC, the biomass power plant must demonstrate that 70% of its total biofuel usage is sustainable. The UK uses the Sustainable Biomass Program (SBP) certification system, which is gradually expanding to other European countries, to prove the sustainability of biomass energy fuels. Global wood pellet production with SBP certification in 2019 was 10.5 Mt. This trend has significant implications for introducing additional sustainability into the wood pellet policy of South Korea.

Estimation of the Amount of Round Wood in Unused Forest Biomass Reporting in Forest Clearing (미이용 산림바이오매스 공급에 있어 수확벌채의 원목 혼입량 추정)

  • Jiyoon, Yang;Jaejung, Lee;Hanseob, Jeong;Sang Hun, Han;Soo Min, Lee
    • New & Renewable Energy
    • /
    • v.18 no.4
    • /
    • pp.70-78
    • /
    • 2022
  • To respond to global warming, there is an increasing interest in eco-friendly alternative energy sources. Therefore, unused forest biomass that has been neglected due to a lack of marketability is attracting attention. With the introduction of the "unused forest biomass certification system" in 2019, ways of determining quantity of unused forest biomass have steadily increased. However, there have been reported cases whereby unused forest biomass weighed more than the amount of harvested trees. It was found that it was possible that forest resources that can be used as round wood were mixed with unused forest biomass. In this context, this study aimed to estimate the amount of mixed round wood in the unused forest biomass supply. The relative expression of growing stock/ha versus the amount of final clearing/ha collected was modeled (y=1.490x-94.341, R2=0.861). As a result, it was found that round wood was mixed into the unused forest biomass, contributing to the disparity observed between the weighted forest biomass and the amount of trees harvested. In conclusion, proper declaration and certification procedures should be carried out for the use of forest resources and promoting unused forest biomass usage.

Basic Study on Oversea Biomass Energy Resources 1 - Palm Biomass (해외 바이오매스 에너지자원 확보를 위한 기초조사 1 - 팜 바이오매스)

  • Lee, Hyoung Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.439-449
    • /
    • 2014
  • RPS (Renewable Portfolio Standard) has increased wood pellet demand dramatically in recent years in Korea where self-supply rate of wood pellet is not more than 10%. However global production capacity of wood pellet is prospected to be unable to meet the global demand after 2020. Therefore it is urgently needed to develop new sustainable biomass energy resources which can replace wood pellet at lower cost. As a result of this study EFB (empty fruit bunch) and MF (mesocarp fiber), the representative solid palm biomass, are estimated to be generated at the rate of 20 and 28 million tons per year (based on 10% moisture content) in Malaysia and Indonesia, respectively in 2012. Total annual generation rate of EFB and MF is estimated as 48 million tons per year only in Malaysia and Indonesia in 2012. With calorific value of over 90% of wood pellet EFB is expected to be a excellent biomass energy resource which can replace wood pellet. EFB can be utilized as fuel for power generation or industrial purpose. However EFB may not be a proper fuel for domestic and greenhouse heating because of its high ash content.

펄프 용재의 경제적 활용을 위한 펠릿 대체 원료 탐색

  • Kim, Seong-Ho;Kim, Cheol-Hwan;An, Byeong-Il;Lee, Ji-Yeong;Sheikh, M. Mominul Islam;Park, Hyeon-Jin;Kim, Gyeong-Cheol;Sim, Seong-Ung;Gang, Tae-U;Jo, Hu-Seung
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2011.10a
    • /
    • pp.289-296
    • /
    • 2011
  • Recently, much of forest biomass has been obtained from the national forest management operation. Unfortunately, Korean Forest Services has a plan to use this forest biomass as energy fuels for wood pellets. Considering unhappy situation that about 80% of wood pulps has been imported, it is regarded as unwise decision. If forest biomass can be used to make pulps or other valuable woody products, we are able to double its economic value than the raw materials for wood pellets. In this study, we explored alternative raw materials for wood biomass used to make wood pellets. For this, fresh technology such as torrefaction was applied with the other lignocellulosic biomass.

  • PDF

Characteristics of Carbonized Biomass Produced in a Manufacturing Process of Wood Charcoal Briquettes Using an Open Hearth Kiln (평로탄화로를 이용한 성형목탄 제조공정에서 생산된 탄화 바이오매스의 특성)

  • JU, Young Min;LEE, Hyung Won;KIM, Ah-ran;JEONG, Hanseob;CHEA, Kwang-Seok;LEE, Jaejung;AHN, Byoung-Jun;LEE, Soo Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.181-195
    • /
    • 2020
  • Characteristics of carbonized biomass obtained from a Wood charcoal briquette manufacturing process using an open hearth kiln are analyzed in this research, and differences in the characteristics based on the results of a mechanical screening process and the position within the kiln. One type of biomass and five types of carbonized biomass were collected from a Wood charcoal briquette manufacturer. After screening and grinding processes were performed on samples of 1 type of biomass and 5 types of carbonized biomass extracted from a Wood charcoal briquettes manufacturer to classify by particle size, fixed carbon, ash, volatile matters, elemental composition, and high heating value (HHV) were measured. Experimental results showed that the carbonized biomass collected from the middle layer had the highest HHV, 20.4 MJ/kg, and therefore had the highest fuel quality. In terms of particle size, the carbonized biomass below 100 mesh had the lowest ash content and the highest HHV, carbon content, and fixed carbon content. Correlation analyses showed that ash content had negative correlations with HHV, volatile matters, fixed carbon, and carbon content, which suggested that ash content affected negatively on fuel quality.

Combustion Characteristics of Coal and Wood Biomass Co-Firing on the Pulverized Coal Combustion Furnace (목질계 바이오매스와 유연탄의 혼합 연소특성에 관한 연구)

  • Kim, Sung-Chul;Lee, Hyun-Dong;Kim, Jae-Gwan
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.293-298
    • /
    • 2006
  • There are many researches in progress on co-firing of coal and biomass to reduce carbon dioxide produced from the coal consumption. This study carried out 200 Kg/h combustion test furnace by mixing coal with timber. Coal was mixed with domestic and imported-wood around 10% to 20% based on input energy. For the mixed fuel, combustion temperature, unburned carbon and the composition of flue gas were analyzed. In addition, the tendency of slagging and fouling was examined using a probe. According to the result of the experiment, combustion temperature was depended on the kind of wood and mixing ratio. The unburned carbon loss was higher with increase of wood biomass mixing ratio, as a result, the total heat loss of furnace was slightly increased. The emission of NOx and SOx were decreased by $3{\sim}20%$ and $21{\sim}60%$ respectively. There are no difference of slagging and fouling tendency between biomass co-firing and coal burning only.

  • PDF