• Title/Summary/Keyword: Wolsong site

Search Result 34, Processing Time 0.027 seconds

Regional Production, Income and Employment Impact of Nuclear Power Plant (원자력발전소(原子力發電所)가 지역(地域)의 생산(生産), 소득(所得)과 고용(雇傭)에 미치는 효과(效果) 분석(分析))

  • Shin, Yong-In;Yang, Kwang-Nam
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.2
    • /
    • pp.272-284
    • /
    • 1996
  • The present study has quantitatively assessed the regional production, income and employment impact resulting from the construction and operation of nuclear power plant (NPP) upon the domestic local areas by applying the regional input-output analysis model to the case of Wolsong unit-l site. The conclusions regarding the most likely regional economic impacts upon the wolsong site are summarized as follows: 1. The income multipliers are calculated to be 1.563 for the construction phase and 1.500 for the operation phase. These values are relatively high compared with those of other conventional facilities. 2. The level of total employee's wage induced employment associated with the construction phase has been estimated to be 37,000 while that with the operational phase in 1990 to be 5,610. 3. With relation to the aspect of resident welfare it is found that the industrial sector associated with electricity, gas and water supply have remarkably improved with the construction of the NPP. 4. The NPP siting has induced substantial changes in interindustry (input-output) structures of the Wolsong unit-l site which is one of the rural areas where all the domestic NPPs are sited. Such changes are attributed to the industrial recomposition of the region. 5. With the application of other regional economic analysis models and the use of more sufficient regional data, other detailed studies on the economic impact analysis of domestic NPP-related facility sitings are suggested to be carried out further since the influence of NPP sitings is significant to the national economic impact as well as the regional economic impact.

  • PDF

Analysis on the Pigment Composition of Phytoplankton Assemblages using HPLC (High Performance Liquid Chromatography) in the Adjacent Waters of Nuclear Power Plants in Spring

  • Choi, Hyu-Chang;Kang, Yeon-Shik;Choi, Joong-Ki;Song, Tae-Yoon;Yoo, Man-Ho
    • Journal of the korean society of oceanography
    • /
    • v.39 no.4
    • /
    • pp.234-242
    • /
    • 2004
  • The pigment composition and concentration of phytoplankton assemblages using HPLC in the adjacent waters of four nuclear power plants (Yonggwang, Kori, Wolsong and Ulchin) were investigated during the spring blooming in 2004. The mean concentration of chlorophyll a ranged from 563.8 to 2,949.0ng $l^{-1}$, with the lowest concentration at Kori and the highest concentration at Wolsong. Among the carotenoids, the amounts of fucoxanthin and chlorophyll $C_2$ were relatively higher than those of other pigments in the study site. As minor pigments, zeaxanthin, chlorophyll b, 19'-butanoyloxyfucoxanthin, diadinoxanthin, 19'-hexanoyloxyfucoxanthin, chlorophyll $C_3$ and peridinin were detected. The results of pigment composition and concentration showed that diatoms had an important proportion of phytoplankton community when a spring bloom occurred. Cyanobacteria was present relatively low density at the Wolsong and the green alga such as chlorophytes and prasinophytes were abundant at the Yonggwang and Kori, while dinoflagellates characterized by peridinin were common at Ulchin and Kori. The pigment composition and concentration of phytoplankton after passing through the cooling-water system of nuclear power plant were highly variable. No distinct trend of the change of each pigment composition and amount was detected but the variation of fucoxanthin and chlorophyll $C_2$ highly coupled with that of chlorophyll a. We pointed out that the diatom controlled the overall variation of phytoplankton biomass during the spring season.

Failure Cause Analysis for Loss of Off-site Power Test during Normal Full Power Operation On Wolsong-4 NPP (월성원전 4호기 전 출력 운전시 소외전원상실시험 실패 원인분석)

  • Chang, Tae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.175-181
    • /
    • 2000
  • 월성원자력4호기가 '99.06.09일 11:53분 경 전출력 소외전원상실시험시 주발전기 병입차단기 및 기동용변압기 차단기의 트립과 동시에 예상 밖의 13.8Kv 원자로 냉각재펌프모터#3(9.000HP)이 순시과전류 보호계전기(50Y) 동작으로 트립되어 이로 인한 냉각재 저유량으로 원자로 제1정지계통이 동작되고 원자로가 비상정지 되어 동 시험이 실패되었음. 이 비정상적인 고장은 예비디젤발전기의 수동 기동 병입과 터빈 수동 정지 및 주발전기 트립후 적절한 조치로 소내전원은 정상적으로 복구되었음. 이에 대해 냉각재펌프모터#3의 순시과전류 동작 원인을 유도전동기의 전원상실 후 발생되는 잔류전압(Residual Voltage)과 공급 모선전압(Bus Voltage) 측면에서 분석하며, 모터의 회전속도, 위상각, 잔류전압크기 변화 및 신속개방 절체시 냉각재펌프모터의 돌입 기동전류를 계산하고, PSS/E 프로그램을 사용한 간략한 모의 사례로 검증하였으며 이에 대한 재발방지를 위한 대책을 제시함.

  • PDF

A Study on the Public Evacuation Time Estimates for Radiological Emergency Plan and Preparedness of Wolsong Nuclear Power Plant Site (방사선 비상계획을 위한 월성원전 주변 주민 소개시간 예측 연구)

  • Lee, Gab-Bock;Bang, Sun-Young;Chung, Yang-Geun
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.2
    • /
    • pp.79-88
    • /
    • 2007
  • When an accident occurs at nuclear power plant and radionuclide material is released to the area around the plant, public evacuation is considered as a measure to protect the safety of the residents nearby. This study draws factors required to estimate evacuation time and make estimation of the time to evacuate all residents from the EPZ of Wolsong site in consideration of traffic condition in the neighborhood and on the basis of field data around the site for each factor. The traffic capacity and the traffic volume by season were investigated for the traffic analysis and simulation within EPZ of Wolsong site. As a result, the background traffic volume by season were established. To estimate TGT(Trip Generation Time), the questionnaire surveys were carried out for resident and transient. The TSIS code was applied to traffic analysis in the events of daytime/night and normal/adverse weather under normal day/summer peak traffic condition. The results showed that the evacuation time required for total vehicles to move out from EPZ took generally from 118 to 150 minutes. The evacuation time took longer maximum 17 minutes at night than daytime during summer peak traffic.

A Shape of the Response Spectrum for Evaluation of the Ultimate Seismic Capacity of Structures and Equipment including High-frequency Earthquake Characteristics (구조물 및 기기의 한계성능 평가를 위한 고진동수 지진 특성을 반영한 응답스펙트럼 형상)

  • Eem, Seung-Hyun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • In 2016, an earthquake occurred at Gyeongju, Korea. At the Wolsong site, the observed peak ground acceleration was lower than the operating basis earthquake (OBE) level of Wolsong nuclear power plant. However, the measured spectral acceleration value exceeded the spectral acceleration of the operating-basis earthquake (OBE) level in some sections of the response spectrum, resulting in a manual shutdown of the nuclear power plant. Analysis of the response spectra shape of the Gyeongju earthquake motion showed that the high-frequency components are stronger than the response spectra shape used in nuclear power plant design. Therefore, the seismic performance evaluation of structures and equipment of nuclear power plants should be made to reflect the characteristics of site-specific earthquakes. In general, the floor response spectrum shape at the installation site or the generalized response spectrum shape is used for the seismic performance evaluation of structures and equipment. In this study, a generalized response spectrum shape is proposed for seismic performance evaluation of structures and equipment for nuclear power plants. The proposed response spectrum shape reflects the characteristics of earthquake motion in Korea through earthquake hazard analysis, and it can be applied to structures and equipment at various locations.

A Safety Assessment for the Wolsong LILW Disposal Center: As a part of safety case for the first stage disposal (월성원자력환경관리센터의 폐쇄후 처분안전성평가: 1단계 인허가 적용사례를 중심으로)

  • Park, Joo-Wan;Yoon, Jeong-Hyun;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.329-346
    • /
    • 2008
  • Post-closure safety assessment for the Wolsong Low- and Intermediate-level radioactive waste Disposal Center is described. Based on assessment context, closure concept and ground water flow characteristics of the disposal site, brief descriptions are included on the assessment scenarios, models, input parameters and tools. Radionuclide transport modeling in the near-field and far-field, gas generation and transport modeling, human intrusion and biosphere transport are also described briefly. Assessment results for each scenarios are shown to meet the performance criteria of regulatory body. Further and continuous efforts to improve the safety of disposal facility will be made during the construction and operational period.

  • PDF

Development of a Dynamic Downscaling Method for Use in Short-Range Atmospheric Dispersion Modeling Near Nuclear Power Plants

  • Sang-Hyun Lee;Su-Bin Oh;Chun-Ji Kim;Chun-Sil Jin;Hyun-Ha Lee
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.1
    • /
    • pp.28-43
    • /
    • 2023
  • Background: High-fidelity meteorological data is a prerequisite for the realistic simulation of atmospheric dispersion of radioactive materials near nuclear power plants (NPPs). However, many meteorological models frequently overestimate near-surface wind speeds, failing to represent local meteorological conditions near NPPs. This study presents a new high-resolution (approximately 1 km) meteorological downscaling method for modeling short-range (< 100 km) atmospheric dispersion of accidental NPP plumes. Materials and Methods: Six considerations from literature reviews have been suggested for a new dynamic downscaling method. The dynamic downscaling method is developed based on the Weather Research and Forecasting (WRF) model version 3.6.1, applying high-resolution land-use and topography data. In addition, a new subgrid-scale topographic drag parameterization has been implemented for a realistic representation of the atmospheric surface-layer momentum transfer. Finally, a year-long simulation for the Kori and Wolsong NPPs, located in southeastern coastal areas, has been made for 2016 and evaluated against operational surface meteorological measurements and the NPPs' on-site weather stations. Results and Discussion: The new dynamic downscaling method can represent multiscale atmospheric motions from the synoptic to the boundary-layer scales and produce three-dimensional local meteorological fields near the NPPs with a 1.2 km grid resolution. Comparing the year-long simulation against the measurements showed a salient improvement in simulating near-surface wind fields by reducing the root mean square error of approximately 1 m/s. Furthermore, the improved wind field simulation led to a better agreement in the Eulerian estimate of the local atmospheric dispersion. The new subgrid-scale topographic drag parameterization was essential for improved performance, suggesting the importance of the subgrid-scale momentum interactions in the atmospheric surface layer. Conclusion: A new dynamic downscaling method has been developed to produce high-resolution local meteorological fields around the Kori and Wolsong NPPs, which can be used in short-range atmospheric dispersion modeling near the NPPs.

FARE Device Operational Characteristics of Remote Controlled Fuelling Machine at Wolsong NPP

  • I. Namgung;Lee, S.K.;Kim, Y.B.
    • Nuclear Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.468-481
    • /
    • 2002
  • There are 4 CANDU6 type reactors operating at Wolsong site. For fuelling operation of certain fuel channels (with flow less than 21.5 kg/s) a FARE flow Assist Ram Extension) device is used. During the refuelling operation, two remote controlled F/Ms (Fuelling Machines) are attached to a designated fuel channel and carry out refuelling job. The upstream F/M inserts new fuel bundles into the fuel channel while the downstream F/M discharges spent fuel bundles. In order to assist fuelling operation of channels that has lower coolant How rate, the FARE device is used instead of F/M C-ram to push the fuel bundle string. The FARE device is essentially a How restricting element that produces enough drag force to push the fuel bundle string toward downstream F/M. Channels that require the use of FARE device for refuelling are located along the outside perimeter of reactor. This paper presents the FARE device design feature, steady state hydraulic and operational characteristics and behavior of the device when coupled with fuel bundle string during fuelling operation. The study showed that the steady state performance of FARE device meets the design objective that was confirmed by downstream F/M C-ram force to be positive.

Dynamic Parameter Estimation of a CANDU Type Containment Using Ambient Vibration Measurements (상시진동을 이용한 CANDU형 격납건물의 동적파라미터 산정)

  • Choi, Sanghyun;Park, Sooyong;Hyun, Chang-Hun;Kim, Moon-Soo
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.2
    • /
    • pp.188-196
    • /
    • 2012
  • Dynamic parameters such as natural frequencies can provide global stiffness information of a structure, and thus be utilized in monitoring structural integrity of large structures such as a containment. To identify the dynamic parameters without interrupting normal operation, a modal analysis method based on ambient vibration measurements should be applied. In this study, dynamic parameters of the containment of Wolsong Unit 2 are identified using ambient vibration measurement data. The feasibility of the study is verified using a numerical model for the containment. From the modal analysis, dynamic parameters of the containment with acceptable correlation to analytical modes can be estimated.