• 제목/요약/키워드: WoS

검색결과 261건 처리시간 0.043초

$SnO_{2}$과 Pt를 첨가한 $WO_{3}$후막센서의 제조 및 NOx감응 특성 (Fabrication and NOx sensing Characteristics of $WO_{3}$ doped with $SnO_{2}$ and Pt Thick Film Devices)

  • 이대식;한상도;박기배;심규성;이덕동;손영목
    • 센서학회지
    • /
    • 제5권5호
    • /
    • pp.47-54
    • /
    • 1996
  • $WO_{3}$모물질에 Pt와 $SnO_{2}$ 활성촉매를 첨가하여 수 ppm정도의 NOx를 감지할 수 있는 후막형 NOx센서를 제조하였다. 센서의 최대 감도는 $250^{\circ}C$정도에서 얻을 수 있었으나, 회복속도를 고려하여 $330^{\circ}C$에서 특성실험을 실시하였다. 기존의 $WO_{3}$를 사용한 것보다 감도, 반응 및 회복 속도가 개선되었고 또한 뛰어난 선택성과 기체흐름에 대한 안정성을 보여주었다. 농도변화에 대한 선형성이 우수하게 나타남으로 계측기에 응용가능성을 보여주었다.

  • PDF

Tungstate Ion 감응 전극에 관한 연구 (A Study on the Tungstate-Sensing Electrodes)

  • 인권식;이중화
    • 대한화학회지
    • /
    • 제27권2호
    • /
    • pp.111-116
    • /
    • 1983
  • Tungstate 이온 감응에 대하여 세가지 성분인 $Ag_2S-PbS-PbWO_4$로된 전극이 제조되어 평가 되었다. 성분비(w/w%)가 51.71 : 16.64 : 31.65인 전극이 전위차 감응, 안정도, 감응속도, 감응속도, 재현성이 우수 하였다. $0.1F-NH_4Ac-NH_4OH$ 완충용액 속에서 일정한 이온강도와 pH 8.00로 조정된 $10^{-1}~10^{-4}M WO_4^{2-}$ 농도범위에서 실험하였고 감응성은 phosphate 감응 전극과 비슷하였다. 많은 이온들이 방해를 하였다.

  • PDF

Fluoride 첨가에 따른 CaWO$_4$의 소결 및 고주파 유전특성 (Effects of Fluoride Additions on Sintering and Microwave Dielectric Properties of CaWO$_4$)

  • 이경호;김용철;방재철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.127-130
    • /
    • 2002
  • In this study, development of a new LTCC material using a non-glassy system was attempted with respect to reducing the fabrication process steps and cost down. Lowering the sintering temperature can be achieved by liquid phase sintering. For LTCC application, the starting material must have quality factor as high as possible in microwave frequency range. And also, the material should have a low dielectric constant for enhancing the signal propagation speed. Regarding these factors, dielectric constants of various materials were estimated by the Clausius-Mosotti equation. Among them, CaWO$_4$ was tamed out the suitable LTCC material. CaWO$_4$ can be sintered up to 98% of full density at 1200$^{\circ}C$ for 3 hours. It's measured dielectric constant, quality factor, and temperature coefficient of resonant frequency were 10.15, 62880GHz, and -27.8ppm/$^{\circ}C$, respectively. In order to modify the dielectric properties and densification temperature, 0.5∼1.5 wt% LiF were added to CaWO$_4$. LiF addition reduced the sintering temperature/time down to 800$^{\circ}C$/10∼30min due to the reactive liquid phase sintering. Dielectric constant lowered from 10.15 to 9.38 and Q x fo increased up to 92000GHz with increasing LiF content.

  • PDF

The effect of root canal preparation on the surface roughness of WaveOne and WaveOne Gold files: atomic force microscopy study

  • Ozyurek, Taha;Yilmaz, Koray;Uslu, Gulsah;Plotino, Gianluca
    • Restorative Dentistry and Endodontics
    • /
    • 제43권1호
    • /
    • pp.10.1-10.8
    • /
    • 2018
  • Objectives: To examine the surface topography of intact WaveOne (WO; Dentsply Sirona Endodontics) and WaveOne Gold (WOG; Dentsply Sirona Endodontics) nickel-titanium rotary files and to evaluate the presence of alterations to the surface topography after root canal preparations of severely curved root canals in molar teeth. Materials and Methods: Forty-eight severely curved canals of extracted molar teeth were divided into 2 groups (n = 24/each group). In group 1, the canals were prepared using WO and in group 2, the canals were prepared using WOG files. After the preparation of 3 root canals, instruments were subjected to atomic force microscopy analysis. Average roughness and root mean square values were chosen to investigate the surface features of endodontic files. The data was analyzed using one-way analysis of variance and post hoc Tamhane's tests at 5% significant level. Results: The surface roughness values of WO and WOG files significantly changed after use in root canals (p < 0.05). The used WOG files exhibited higher surface roughness change when compared with the used WO files (p < 0.05). Conclusions: Using WO and WOG Primary files in 3 root canals affected the surface topography of the files. After being used in root canals, the WOG files showed a higher level of surface porosity value than the WO files.

Morphology-Controlled WO3 and WS2 Nanocrystals for Improved Cycling Performance of Lithium Ion Batteries

  • Lim, Young Rok;Ko, Yunseok;Park, Jeunghee;Cho, Won Il;Lim, Soo A;Cha, EunHee
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권1호
    • /
    • pp.89-97
    • /
    • 2019
  • As a promising candidate for anode materials in lithium ion battery (LIB), tungsten trioxide ($WO_3$) and tungsten disulfide ($WS_2$) nanocrystals were synthesized, and their electrochemical properties were comprehensibly studied using a half cell. One-dimensional $WO_3$ nanowires with uniform diameter of 10 nm were synthesized by hydrothermal method, and two-dimensional (2D) $WS_2$ nanosheets by unique gas phase sulfurization of $WO_3$ using $H_2S$. $WS_2$ nanosheets exhibits uniformly 10 nm thickness. The $WO_3$ nanowires and $WS_2$ nanosheets showed maximum capacities of 552 and $633mA\;h\;g^{-1}$, respectively, after 100 cycles. Especially, the capacity of $WS_2$ is significantly larger than the theoretical capacity ($433mA\;h\;g^{-1}$). We also examined the cycling performance using a larger size $WO_3$ and $WS_2$ nanocrystals, showing that the smaller size plays an important role in enhancing the capacity of LIBs. The larger capacity of $WS_2$ nanosheets than the theoretical value is ascribed to the lower charge transfer resistance of 2D nanostructures.

$CaWO_4$$Gd_2O_2S$ : Tb 증감지의 형광체 형태와 사진감도 특성에 관한 연구 (A Study on the Photographic Characteristics Related to the Morphology of Phosphor Layers in the $CaWO_4$ and $Gd_2O_2S$ : Tb Screen)

  • 이인자;허준
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제16권1호
    • /
    • pp.41-55
    • /
    • 1993
  • Recently, various screen film system have been introduced in diagnostic radiology. There are two kinds of screen film system : blue emitting $CaWO_4$ screen has been largely used in these days. However, it tends to be changed to use green emitting $Gd_2O_2S$ : Tb screen. In this study, photographic characteristics of $CaWO_4$ and $Gd_2O_2S$ : Tb screen were investigated with luminescence, spectroscopy. The morphology of $CaWO_4$ and $Gd_2O_2S$ : Tb were also observed by using scanning electron microscope. The result obtained were as follows : 1. There was small difference in the thickness of phosphor layers for the front and back screen of blue emitting system, but little difference in those of green emitting system. 2. There was no difference in the size of phosphor particles between the front and back screen for each screen. However, the particle size was different for the various kinds of screens. 3. The shape of phosphor particle was round with many faces for all the screens. 4. In the exposure of X-ray with the same intensity, luminescent intensity of a green emitting system was $6{\sim}7$ times larger than that of a blue emitting system. 5. The thickness of phosphor layers does not affect on the sensitivity of the screens exposed by X-ray.

  • PDF

$ZnWO_4$ 소결특성 및 고주파 유전특성 (Sintering and Microwave Dielectric Properties of $ZnWO_4$)

  • 이경호;김용철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.386-389
    • /
    • 2001
  • In this study, development of a new LTCC material using non-glassy system was attempted with repsect to reducing the fabrication process steps and cost down. Lowering the sintering temperature can be achieved by liquid phase sintering. However, presence of liquid phases usually decrease dielectric properties, especially the quality factor. Therefore, the starting material must have quality factor as high as possible in microwave frequency range. And also, the material should have a low dielectric constant for enhancing the signal propagation speed. Regarding these factors, dielectric constants of various materials were estimated by the Clausius-Mosotti equation. Among them, $ZnWO_4$ was turned out the suitable LTCC material. $ZnWO_4$ can be sintered up to 98% of full density at $1050^{\circ}C$ for 3 hours. It's measured dielectric constant, quality factor, and temperature coefficient of resonant frequency were 15.5, 74380GHz, and $-70ppm/^{\circ}C$, respectively. In order to modify the dielectric properties and densification temperature, $B_{2}O_{3}$ and $V_{2}O_{5}$ were added to $ZnWO_4$. 40 mol% $B_{2}O_{3}$ addition reduced the dielectric constant from 15.5 to 12. And the temperature coefficient of resonant frequency was improved from -70 to $-7.6ppm/^{\circ}C$. However, sintering temperature did not change due to either lack of liquid phase or high viscosity of liquid phase. Incorporation of small amount of $V_{2}O_{5}$ in $ZnWO_{4}-B_{2}O_{3}$ system enhanced liquid phase sintering. 0.1 wt% $V_{2}O_{5}$ addition to the $0.6ZnWO_{4}-0.4B_{2}O_{3}$ system, reduced the sintering temperature down to $950^{\circ}C$. Dielectric constant, quality factor, and temperature coefficient of resonant frequency were 9.5, 16737GHz, and $-21.6ppm/^{\circ}C$, respectively.

  • PDF

$ZnWO_4$ 소결특성 및 고주파 유전특성 (Sintering and Microwave Dielectric Properties of $ZnWO_4$)

  • 이경호;김용철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.386-389
    • /
    • 2001
  • In this study, development of a new LTCC material using non-glassy system was attempted with respect to reducing the fabrication process steps and cost down. Lowering the sintering temperature can be achieved by liquid phase sintering. However, presence of liquid phases usually decrease dielectric properties, especially the quality factor. Therefore, the starting material must have quality factor as high as possible in microwave frequency range. And also, the material should have a low dielectric constant for enhancing the signal propagation speed. Regarding these factors, dielectric constants of various materials were estimated by the Clausius-Mosotti equation. Among them, ZnWO$_4$ was turned out the suitable LTCC material. ZnWO$_4$ can be sintered up to 98% of full density at 105$0^{\circ}C$ for 3 hours. It's measured dielectric constant, quality factor, and temperature coefficient of resonant frequency were 15.5, 74380GHz, and -70ppm/$^{\circ}C$, respectively In order to modify the dielectric properties and densification temperature, B$_2$O$_3$ and V$_2$O$_{5}$ were added to ZnWO$_4$. 40 mol% B$_2$O$_3$ addition reduced the dielectric constant from 15.5 to 12. And the temperature coefficient of resonant frequency was improved from -70 to -7.6ppm/$^{\circ}C$. However, sintering temperature did not change due to either lack of liquid phase or high viscosity of liquid phase. Incorporation of small amount of V$_2$O$_{5}$ in ZnWO$_4$-B$_2$O$_3$ system enhanced liquid phase sintering. 0.lwt% V$_2$O$_{5}$ addition to the 0.6ZnWO$_4$-0.4B$_2$O$_3$ system, reduced the sintering temperature down to 95$0^{\circ}C$ Dielectric constant, quality factor, and temperature coefficient of resonant frequency were 9.5, 16737GHz, and -21.6ppm/$^{\circ}C$ respectively.ively.

  • PDF

MOD법에 의해 제조된 $NO_x$ 가스용 반도체 박막센서의 특성 (Characteristics of Semiconductor Thin Film $NO_x$ Sensor Fabricated by MOD Method)

  • 송수호;송민석;이재열
    • 한국전기전자재료학회논문지
    • /
    • 제11권11호
    • /
    • pp.1001-1006
    • /
    • 1998
  • $WO_3$ based semiconduction sensor have been reported to have excellent sension properties to $NO_x$ gases by many researchers. In this study appropriate $WO_3$ precursor have been chosen and thin film sensors were fabricated by metallo organic deposition process. Their sensing characteristics were investigated as a function of NO concentration, heat treatment, and measuring temperature. Tungsten dichloro triethoxide was found to be a good precursor for $WO_3$ thin film in this method. Samples heat treated at $600^{\circ}C$ showed sensitivity (S) 200 to 50 ppm NO gas when measuring temperature was $150^{\circ}C$.

  • PDF