Browse > Article
http://dx.doi.org/10.5229/JECST.2019.10.1.89

Morphology-Controlled WO3 and WS2 Nanocrystals for Improved Cycling Performance of Lithium Ion Batteries  

Lim, Young Rok (Department of Chemistry, Korea University)
Ko, Yunseok (Department of Chemistry, Korea University)
Park, Jeunghee (Department of Chemistry, Korea University)
Cho, Won Il (Center for Energy convergence, Korea Institute of Science and Technology)
Lim, Soo A (Dept. of Pharmaceutical Engineering, Hoseo University)
Cha, EunHee (Dept. of Pharmaceutical Engineering, Hoseo University)
Publication Information
Journal of Electrochemical Science and Technology / v.10, no.1, 2019 , pp. 89-97 More about this Journal
Abstract
As a promising candidate for anode materials in lithium ion battery (LIB), tungsten trioxide ($WO_3$) and tungsten disulfide ($WS_2$) nanocrystals were synthesized, and their electrochemical properties were comprehensibly studied using a half cell. One-dimensional $WO_3$ nanowires with uniform diameter of 10 nm were synthesized by hydrothermal method, and two-dimensional (2D) $WS_2$ nanosheets by unique gas phase sulfurization of $WO_3$ using $H_2S$. $WS_2$ nanosheets exhibits uniformly 10 nm thickness. The $WO_3$ nanowires and $WS_2$ nanosheets showed maximum capacities of 552 and $633mA\;h\;g^{-1}$, respectively, after 100 cycles. Especially, the capacity of $WS_2$ is significantly larger than the theoretical capacity ($433mA\;h\;g^{-1}$). We also examined the cycling performance using a larger size $WO_3$ and $WS_2$ nanocrystals, showing that the smaller size plays an important role in enhancing the capacity of LIBs. The larger capacity of $WS_2$ nanosheets than the theoretical value is ascribed to the lower charge transfer resistance of 2D nanostructures.
Keywords
Tungsten oxide; Tungsten sulfide; Nanocrystals; Gas phase sulfurization; Lithium ion battery;
Citations & Related Records
연도 인용수 순위
  • Reference
1 JM.Tarascon and M. Armand, Nature, 2001, 414, 359-367.   DOI
2 B. Dunn, H. Kamath and J. M. Tarascon, Science, 2011, 334(6058), 928-935.   DOI
3 V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, Energy Environ. Sci., 2011, 4(9), 3243-3262.   DOI
4 M. S. Whittingham, Chem. Rev. 2014, 114(23), 11414-11443.   DOI
5 X. Xu, W. Liu, Y. Kim, and J. Cho, Nano Today, 2014, 9(5), 604-630.   DOI
6 X. Hu, W. Zhang, X. Liu, Y. Mei and Y. Huang, Chem. Soc. Rev., 2015, 44(8), 2376-2404.   DOI
7 S. H. Yu, S. H. Lee, D. J. Lee, Y. E. Sung and T. Hyeon, Small, 2016, 12(16), 2146-2172.   DOI
8 X. Cao, C. Tan, X. Zhang, W. Zhao and H. Zhang, Adv. Mater., 2016, 28(29), 6167-6196.   DOI
9 W. -J. Li and Z. -W. Fu, Appl. Surf. Sci., 2010, 256(8), 2447-2452.   DOI
10 L. Wang, S. Yue, Q. Zhang, Y. Zhang, Y. R. Li, C. S. Lewis, K. J. Takeuchi, A. C. Marschilok, E. S. Takeuchi and S. S. Wong, ACS Energy Lett., 2017, 2(6),1465-1478   DOI
11 Y. Qiu, G. -L. Xu, Q. Kuang, S. -G. Sun and S. Yang, Nano Res., 2012, 5(11), 826-832.   DOI
12 S. Yoon, S. -G. Woo, K. -N. Jung and H. Song, J. Alloys. Comp., 2014, 613, 187-192.   DOI
13 Y. Liu, Y. Jiao, H. Zhou, X. Yu, F. Qu and X. Wu, Nano-Micro Lett., 2015, 7(1), 12-16.   DOI
14 Y. Sun, W. Wang, J. Qin, D. Zhao, B. Mao, Y. Xiao and M. Cao, Electrochim. Acta, 2016, 187, 329-339.   DOI
15 H. Tong, Y. Xu, X. Cheng, X. Zhang, S. Gao, H. Zhao and L. Huo, Electrochim. Acta, 2016, 210, 147-154.   DOI
16 X. Wu and S. Yao, Nano Energy, 2017, 42, 143-150.   DOI
17 X. Gu, F. Wu, B. Lei, J. Wang, Z. Chen, K. Xie, Y. Song, D. Sun, L. Sun, H. Zhou, and F. Fang, J. Power Sources, 2016, 320, 231-238.   DOI
18 J. Xu, Y. Li, L. Wang, Q. Cai, Q. Li, B. Gao, X. Zhang, K. Huo and P. K. Chu, Nanoscale, 2016, 8(37), 16761-16768.   DOI
19 Z. Liu, P. Li, Y. Dong, Q. Wan, F. Zhai, A. A. Volinsky and X. Qu, Appl. Surf. Sci., 2017, 394, 70-77.   DOI
20 K. Bao, W. Mao, G. Liu, L. Ye, H. Xie, S. Ji, D. Wang, C. Chen and Y. Li, Nano Res., 2017, 10(6), 1903-1911.   DOI
21 G. X. Wang, S. Bewlay, J. Yao, H. K. Liu and S. X. Dou, Electrochem. Solid-State Lett., 2004, 7(10), A321-A323.   DOI
22 K. Shiva, H. S. S. R. Matte, H. B. Rajendra, A. J. Bhattacharyya and C. N. R. Rao, Nano Energy, 2013, 2(5), 787-793.   DOI
23 Z. Q. Duan, Y. C. Sun, Y. T. Liu, X. M. Xie and X. D. Zhu, RSC Adv., 2014, 4, 41543-41550.   DOI
24 X. Xu, C. S Rout, J. Yang, R. Cao, P. Oh, H. S. Shin and J. Cho, J. Mater. Chem. A, 2013, 1(46), 14548-14554.   DOI
25 Y. Liu, W. Wang, Y. Wang and X. Peng, Nano Energy, 2014, 7, 25-32.   DOI
26 R. Chen, T. Zhao, W. Wu, F. Wu, L. Li, J. Qian, R. Xu, H. Wu, H. M. Albishri, A. S. Al-Bogami, D. A. El-Hady, J. Lu and K. Amine, Nano Lett., 2014, 14(10), 5899-5904.   DOI
27 H. Li, K. Yu, H. Fu, B. Guo, X. Lei and Z. Zhu, Phys. Chem. Chem. Phys., 2015, 17(44), 29824-29833.   DOI
28 W. Lv, J. Xiang, F. Wen, Z. Jia, R. Yang, B. Xu, D. Yu, J. He and Z. Liu, Electrochim. Acta, 2015, 153, 49-54.   DOI
29 W. Yang, J. Wang, C. Si, Z. Peng, J. Frenzel, G. Eggeler and Z. Zhang, J. Mater. Chem. A, 2015, 3(34), 17811-17819.   DOI
30 Y. Du, X. Zhu, L. Si, Y. Li, X. Zhou and J. Bao, J. Phys. Chem. C, 2015, 119(238), 15874-15881.   DOI
31 X. Zeng, Z. Ding, C. Ma, L. Wu, J. Liu, L. Chen, D. G. Ivey and W. Wei, ACS Appl. Mater. Interfaces, 2016, 8(29), 18841-18848.   DOI
32 Y. Wang, D. Kong, W. Shi, B. Liu, G. J. Sim, Q. Ge and H. Y. Yang, Adv. Energy Mater., 2016, 6(21), 1601057.   DOI
33 D. Chen, G. Ji, B. Ding, Y. Ma, B. Qu, W. Chen and J. Y. Lee, Nanoscale, 2013, 5(17), 7890-7896.   DOI
34 L. Zhou, S. Yan, L. Pan, X. Wang, Y. Wang and Y. Shi, Nano Res., 2016, 9(3), 857-865.   DOI
35 L. Zhang, W. Fan and T. Liu, Nanoscale, 2016, 8(36), 16387-16394.   DOI
36 S. Liu, B. Shen, Y. Niu and M. Xu, J. Colloid. Interface Sci., 2017, 488, 20-25.   DOI