• Title/Summary/Keyword: Wnts

Search Result 3, Processing Time 0.016 seconds

Skeletal Development - Wnts Are in Control

  • Hartmann, Christine
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.177-184
    • /
    • 2007
  • Approximately 200 individual skeletal elements, which differ in shape and size, are the building blocks of the vertebrate skeleton. Various features of the individual skeletal elements, such as their location, shape, growth and differentiation rate, are being determined during embryonic development. A few skeletal elements, such as the lateral halves of the clavicle and parts of the skull are formed by a process called intramembranous ossification, whereby mesenchymal cells differentiate directly into osteoblasts, while the majority of skeletal elements are formed via endochondral ossification. The latter process starts with the formation of a cartilaginous template, which eventually is being replaced by bone. This requires co-regulation of differentiation of the cell-types specific for cartilage and bone, chondrocytes and osteoblasts, respectively. In recent years it has been demonstrated that Wnt family members and their respective intracellular pathways, such as non-canonical and the canonical $Wnt/{\beta}$-catenin pathway, play important and diverse roles during different steps of vertebrate skeletal development. Based on the recent discoveries modulation of the canonical Wnt-signaling pathway could be an interesting approach to direct stem cells into certain skeletal lineages.

Synthesis and Thermo-mechanical Property of Multi-walled Carbon Nanotubes/Poly(methyl methacrylate-co-butyl acrylate) Nanocomposites Prepared Using Emulsion Polymerizations in the Presence of Amphiphilic Random Terpolymer

  • Chang, Woo-Hyuck;Ki, Ho-Seong;Cheong, In-Woo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.289-289
    • /
    • 2006
  • The carboxylated MWNTs were successfully prepared by conventional acid treatment, and their structures were confirmed by FT-IR, Raman and TEM analysis. The water-dispersibility of the surface modified WNTs were good. The COOH-MWNT will show better stability during the emulsion polymerization as compared with Pristine MWNT. In-situ emulsion polymerizations of methyl methacrylate N(MMA) and n-butyl acrylate (BA) were carried out. Aggregate size and dispersion stability of the CNTs in water phase were measured using dynamic light scattering, turbidity, UV-visible spectrophotometer, and electron microscope. In addition, thermo-mechanical properties of MWNT/polymer nanocomposites were investigated.

  • PDF

The Effects of Wnt Signaling on Neural Crest Lineage Segregation and Specification (Wnt signaling이 neural crest lineage segregation과 specification에 미치는 영향)

  • Song, Jin-Su;Jin, Eun-Jung
    • Journal of Life Science
    • /
    • v.19 no.10
    • /
    • pp.1346-1351
    • /
    • 2009
  • Recent evidence has shown that many pluripotetic neural crest cells are fate-restricted and that different fate-restricted crest cells emigrate from the neural tube at different times. Jin et al. (2001) identified the expression patterns of Wnts and its antagonists at the time that neural crest cells were being specified and suggested that Wnt signaling was involved in the segregation/differentiation of neural crest cells in the trunk in vitro. In this study, we evaluated the effects of Wnt signaling in avian neural crest lineage segregation. To accomplish this, Wnt signaling was disturbed at the time of neural crest segregation and differentiation by grafting Wnt-3a expressing cells and conducting dominant negative glycogen synthase kinase (dnGSK) electroporation. Stimulation of Wnt signaling induced neural crest lineage segregation and melanoblast specification, and increased the expression levels of genes known to be involved in neural crest development such as cadherin 7 and Slug, which suggests that they are involved in Wnt-induced neural crest lineage differentiation into melanoblasts.