• Title/Summary/Keyword: Withania somnifera

Search Result 25, Processing Time 0.02 seconds

The impact of an Unani Formulation in unexplained Secondary Infertility: A Case Report

  • Siddiqui, Sumaiya Mohammed Sabir;Shameem, Ismath
    • CELLMED
    • /
    • v.12 no.3
    • /
    • pp.12.1-12.6
    • /
    • 2022
  • With a prevalence incidence of 8 % to 37%, unexplained infertility (Uqr) is by definition empiric because it does not address a particular defect or functional deficits. Couples with unexplained infertility have a higher than zero chance of becoming pregnant without treatment, but it is less likely than couples who are fertile. The ingredients in the Unani formulation, are baikh asgand (Withania somnifera Dunal), baikh piyabansa (Barleria prionitis Linn), gule dhawa (Anogeissus latifolia), and gule nilofar (Nymphaea alba Linn), were used to treat unexplained secondary infertility, possess the characteristics of muqawwi bah (Aphrodisiac), muqawwi Rahim (Uterotonic), muwallid-i-mani (ovulation-inducing), and mughalliz-i-mani (an agent which increases the viscosity of semen) beginning from the fifth day of the last menstrual cycle for five days with milk. The first cycle of treatment led to the conception of the women.

Evaluation of Bio-Control Efficacy of Trichoderma Strains against Alternaria alternata Causing Leaf Blight of Ashwagandha [Withania somnifera (L.) Dunal]

  • Rahman, Md. Ahsanur;Rahman, Md. Arifur;Moni, Zakiah Rahman;Rahman, Mohammad Anisur
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.3
    • /
    • pp.207-218
    • /
    • 2020
  • Ashwagandha is an important ancient medicinal crops, being affected with many diseases, among which leaf blight caused by Alternaria alternata has become the constraint resulting in huge yield losses. Continuous usage of chemical methods leads to environment, soil and water pollution. Whereas biological control of diseases is long lasting, inexpensive, eco-friendly and harmless to target organisms. In this context, it is aimed to evaluate five Trichoderma strains viz. Trichoderma virens IMI-392430, T. pseudokoningii IMI-392431, T. harzianum IMI-392432, T. harzianum IMI-392433 and T. harzianum IMI-392434 as bio-control efficacy against A. alternata and growth promoting effect in Ashwagandha. All the Trichoderma strains had varied antagonistic effects against the pathogen. In dual culture technique, the strain T. harzianum IMI-392433 showed maximum percentage inhibition of mycelial growth (54.89%) followed by T. harzianum IMI-392432 (53.83%), T. harzianum IMI-392434 (48.94%) and T. virens IMI-392430, (43.62%) against the pathogen, while the least inhibition percentage was observed with the T. pseudokoningii IMI-392431 (36.60%). The culture filtrate of the Trichoderma strain, T. harzianum IMI-392433 recorded highest inhibition on the mycelial growth (39.05%) and spore germination (80.77%) of pathogen and the lowest was recorded in T. pseudokoningii IMI-392431 (20.45 and 50%). Moreover, seeds treated with spore suspension of the strain T. harzianum IMI-392433 reduced the percentages of disease severity index significantly. The strain T. harzianum IMI-392433 also significantly increased seed germination %, seedling vigor and growth of Ashwagandha. The correlation matrix showed that root yield per plant of Ashwagandha had significant and positive correlation with plant height (r=0.726⁎⁎), number of leaf (r=0.514⁎⁎), number of primary branch (r=0.820⁎⁎), number of secondary branch (r=0.829⁎⁎), fresh plant weight (r=0.887⁎⁎), plant dry weight (r=0.613⁎⁎), root length (r=0.824⁎⁎), root diameter (r=0.786⁎⁎), root dry weight (r=0.739⁎⁎) and fresh root weight (r=0.731⁎⁎). The significant and negative correlation (r=-0.336⁎⁎) was observed with the root yield and percentages of disease severity index. The study recognized that the T. harzianum IMI-392433 strain performed well in inhibiting the mycelial growth and reduced the percentages of disease severity index of pathogen as well as increased the plant growth in Ashwagandha.

Anti-cancer Effects and Molecular Mechanisms of Withaferin A (Withaferin A의 다양한 항암 효과 및 분자생화학적 기전)

  • Woo, Seon Min;Min, Kyoung-Jin;Kwon, Taeg Kyu
    • Journal of Life Science
    • /
    • v.23 no.3
    • /
    • pp.462-469
    • /
    • 2013
  • Withaferin A is a steroidal lactone purified from the Indian medicinal plant Withania somnifera. It exhibits a wide variety of activities, including anti-tumor, anti-inflammation, and immunomodulation properties. In this review, we focused on the anti-cancer effects of withaferin A. Withaferin A inhibits cell proliferation, metastasis, invasion, and angiogenesis in cancer cells. Furthermore, it sensitized irradiation, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-, and doxorubicin-mediated apoptosis. The results showed that multiple mechanisms were involved in withaferin A-mediated anti-cancer effects. First, withaferin A increased intracellular reactive oxygen species (ROS) production and induced ER stress- and mitochondria-mediated apoptosis. Second, withaferin A inhibited the signaling pathways (Jak/STAT, Akt, Notch, and c-Met), which are important in cell survival, proliferation, and metastasis. Third, it induced apoptosis and inhibited cancer cell migration through the up-regulation of prostate apoptosis protein-4 (Par-4). Finally, withaferin A up-regulated pro-apoptotic protein expression levels through the inhibition of proteasome activity. Our findings suggested that withaferin A is a potential, potent therapeutic agent.

Tuber quality of Ashwagandha (Withania somnifera Duanal) affected by different growth conditions

  • Kaliyadasa, Ewon;Jayasinghe, Lalith;Peiris, Sriyani
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.151-161
    • /
    • 2019
  • Ashwagandha (Withania sominifera Duanal) is an important medicinal herb with increased demand after discovering its anti-stress and sex stimulating properties that are attributed to the presence of biologically active alkaloid compounds. The aim of this study was to elucidate a proper agro technological package that ensures the optimum growth of Ashwagandha to obtain the finest quality without degrading the pharmacologically active constituents. Mixtures of organic and inorganic fertilizers were combined with direct seeding and transplanted as four different treatments in this study. The fresh and dry weights of the tubers were recorded up to 12 months starting from two months after sowing (MAS) while the shoot height, root length, number of leaves, fresh and dry weights of the shoot and the root with a shoot ratio of up to 6 MAS were determined. The results revealed that the growth of Ashwagandha was not affected significantly by the method of planting, type of fertilizer or their combinations during most of the harvests. However, tubers harvested at 6 MAS had the highest recorded dry tuber weight per plant in all four treatments compared to the early harvests where two direct seeded treatments had the best results. Comparison of the phytochemical compounds showed that direct seeding with organic fertilizer had the highest recorded values for alkaloid and withaferine A contents with a lower percentage of fiber compared to the treatments with inorganic fertilizer. In conclusion, direct seeding with organic fertilizer and tubers harvested at 6 MAS are recommended as the best cultivation conditions and harvesting stage to obtain high quality tubers of Ashwagandha, respectively.

Review of the Antioxidant Effect of Herbal Material in In Vivo Parkinson's Disease Models (파킨슨병 in vivo 모델에서 한약재 및 기능성 식품의 항산화 효과에 대한 고찰)

  • Lee, Gi-hyang;Jeon, Sang-woo;Jeong, Min-jeong;Kim, Hong-jun;Jang, In-soo
    • The Journal of Internal Korean Medicine
    • /
    • v.41 no.6
    • /
    • pp.993-1014
    • /
    • 2020
  • Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. Antioxidant stress and inflammatory reactions are important causes of neurodegenerative diseases and are major causes of PD. Many animal experiments have been aimed at treating PD using the antioxidant effects of various traditional medicines and dietary supplements. This review reports the research investigating the antioxidant effects of herbs in in vivo PD models. Methods: The study consisted of a database search for articles related to PD and herbal treatments using the OASIS, NDSL, KTKP, Korean KISS, PubMed, Science Direct, CNKI, Wanfang, and J-STAGE databases. The search period was limited from the start of the search engine application to November 14, 2019. Studies were selected to confirm the antioxidant effects of herbal medicines in an in vivo PD model. Results: Eighty-two studies were summarized for plant species, extracts (or compounds), animal models, neurotoxins, and functional results. The most frequently used herbal materials were Bacopa monnieri, Camellia sinensis, Centella asiatica, and Withania somnifera. MPTP and 6-OHDA were the most commonly used neurotoxins for inducing PD. Most studies confirmed an increased expression and activation of antioxidant enzymes and a decrease in oxidative stress. Herbal materials showed their antioxidant effects regardless of the order of treatment and confirmed their possible use as treatments for the prevention and treatment of neurodegeneration. Conclusion: Many herbal medicines have antioxidant effects and are likely to be effective in delaying neurodegenerative damage by inhibiting or reducing oxidative stress by expression of antioxidant enzymes.