• Title/Summary/Keyword: With-Corona

Search Result 833, Processing Time 0.027 seconds

Design and Performance Evaluation of a Diode Type Corona Charger for Real-Time Measurement of the Submicron Aerosol (실시간 미세입자 측정을 위한 다이오드형 코로나 하전기의 설계 및 성능평가)

  • Cho, Myung-Hoon;Ji, Jun-Ho;Park, Dong-Ho;Bae, Gwi-Nam;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1066-1074
    • /
    • 2004
  • With a diode corona charger, which is a component of ELPI(Electrical Low Pressure Impactor), aerosol particles are charged to make electrical detection possible before they are collected by the impactor. We designed and evaluated two cylindrical corona chargers, each of which had a central corona needle electrode. For the performance evaluation of each corona charger the polydisperse dioctyl sebacate(DOS) particles, with diameters of 0.1∼0.8 $\mu$m and NaCl particles, smaller than 0.1$\mu$m, were used. The particles were then led through an electrostatic classifier (TSI model 3081) to classify monodisperse aerosol with minimal size deviation. After evaluating the wall loss of the particles in the corona charger, we measured the product of penetration and number of charges, Pㆍn, to evaluate the corona charger efficiency at high positive voltages of 4, 5, 6 kV.

A Study on the Surface Corona Discharge in the Gas with different Mixing Ratio of Air to $SF_6$ ($SF_6$와 공기의 혼합기체중에서의 연면 코로나 방전)

  • 전춘생;조기선;우호환
    • 전기의세계
    • /
    • v.26 no.6
    • /
    • pp.78-85
    • /
    • 1977
  • This paper studies flashover voltage and surface corona loss of A.C and D.C in the mixed gas of air and SF$_{6}$ for solid insulators P.V.C, arcylic, glass and bakelite in two cases. In one case, those solids are covered with transformer oil and the other case, those solids are not covered with it. 1) The flashover voltage for each solids in SF$_{6}$ is more than three times compared with that in the air. The flashover voltage for P.V.C is the highest and then arcylic, glass, bakelite in a decreasing order. 2) The more the amount of SF$_{6}$ in the mixing ratio, the less corona loss. The P.V.C shows the least amount of corona loss and the bakelite the largest. 3) Compared with the corona loss of positive polarity and the negative polarity, the former has less corona loss than the latter. 4) The more the number of flashover discharge, the less insulation of each solids, but in case of bakelite, insulation almost vanishes after a couple of discharge. 5) When each insulator is covered with transformer oil, the flashover voltage generally increases and the corona loss decreases.eases.

  • PDF

Analysis Techniques of Corona Discharges in Air with Needle-Plane Electrode System (침-평판 전극 구조에서 발생하는 기중 코로나 방전의 해석 기법)

  • 강성화;박영국;권순석;정수현;류부형;임기조
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.49-53
    • /
    • 1996
  • Corona discharges in air insulated electric power systems cause power loss, produce interfering electromagnetic radiation, and can indicate incipient failure. An understanding of corona discharges in air gap is clearly Important. The Wavelet transformation is an extended method of fourier transformation. The fourier method is a powerful tool for signal analysis, but it can't include information for time. However the wavelet transformation analysis can include on the information of time and frequencies at the same time. In this paper we apply the wavelet transformation to the corona signals in needle-plane air gap for the purpose of analysis of developing aspects of corona discharges. We analyzed the developing aspects of corona discharges, namely, corona discharge current, repetition rates, width of Pulse distribution region, pulseless region and frequencies distribution of corona discharge pulses.

  • PDF

Effect of Corona Treatment of Polymers on Bonds to Aluminum (高分子 物質의 表面에너지 增加에 對한 새로운 理論. 高分子 物質의 코로나 放電處理가 알루미늄과의 接着强度에 주는 影響)

  • Kim Chung Yup;Sung Ki Joong
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.417-423
    • /
    • 1976
  • Corona treatment of PE, PP and PVC showed a dramatic increase of bond strength when lap joints were made between the polymers and aluminum plates. Heating the corona-treated PE and PP, and PVC in a drying oven at 80 and $50^{\circ}C$, respectively, for 15 min reduced the bond strength to about a half of that of corona-treated but unheated polymers, which indicated that the increase of bond strength was not due to oxidation of the polymer surface. The Weibull distribution function was employed to check reliability of the scattered data obtained from testing the lap joints. It is speculated that electron was deposited on the corona-treated polymer surface to enhance bond strength with aluminum.

  • PDF

Surface Discharge Characteristics of a DC Corona Charged Ferroelectric Pellet Barrier (직류 코로나 하전된 강유전체구 층의 연면방전특성)

  • Geum, Sang-Taek;Lee, Geun-Taek;Mun, Jae-Deok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.385-390
    • /
    • 1999
  • Surface corona discharge characteristics of a dc corona charged ferroelectric pellet barrier have been investigated experimentally. Electric charges stored on the surfaces of the ferroelectric pellets by a dc corona discharge provide partial electric fields on the surfaces of the ferroelectric pellets, which could generate surface corona discharges on the ferroelectric pellets. This system utilizes both the surface discharges on the ferroelectric pellet barrier and the corona discharge between corona tip and mesh electrode. Positive and negative dc voltages were applied to the tip to generate partial discharges, and corona currents were estimated to investigate the buildup charge on ferroelectric pellets as a function of the applied time and the charge relaxation time constants of ferroelectric pellets. As a result, in the case of the negative corona discharge with the ferroelectric pellet barrier, the mean corona current and ozone generation increase greatly, and the surface discharges on the ferroelectric pellets can be fenerated efficiently. It is also found that, charge relaxation time, dielectric constants offerroelectric pellets, polarity of applied voltage and applied time affected to the surface discharges among the ferroelectric pellets.

  • PDF

ORGANIC POLLUTANTS DEGRADATION USING PULSELESS CORONA DISCHARGE: APPLICATION IN ULTRAPURE WATER PRODUCTION

  • Shin, Won-Tae;Sung, Nak-Chang
    • Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.144-154
    • /
    • 2005
  • The use of ozone gained acceptance in the production of ultrapure water because of its powerful oxidizing ability. Ozone is currently used to deactivate microorganisms and remove organic contaminants. However, interest also exists in using radical species, which arc stronger oxidants than ozone, in such processes. One means of producing radical species is by corona discharge. This work investigates the use of a novel pulseless corona-discharge system for the removal of organic substances in ultrapure water production. The method combines corona discharge with electrohydrodynamic spraying of oxygen, forming microbubbles. Experimental results show that pulseless corona discharge effectively removes organics, such as phenol and methylene blue, in deionized water. The corona-discharge method is demonstrated to be comparable to the direct use of ozone at a high-applied voltage. The results also show that a minimum applied voltage exists for operation of the corona-discharge method. In this work, the minimum applied voltage is approximately 4.5 kV. The kinetic rate or phenol degradation in the reactor is modeled. Modeling results show that the dominant species of the pulseless corona-discharge reactor are hydroxyl radical and aqueous electron. Several radical species produced in the pulseless corona-discharge process are identified experimentally. The. major species are hydroxyl radical, atomic hydrogen species, and ozone.

Investigation on the Electrical Discharge Characteristics of a Unipolar Corona-Wire Aerosol Charger

  • Intra, Panich;Yawootti, Artit;Vinitketkumnuen, Usanee;Tippayawong, Nakorn
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.556-562
    • /
    • 2011
  • In the present study, a simple corona-wire charger for unipolar diffusion charging of aerosol particles is designed, constructed, and characterized. Experimental characterizations of the electrostatic discharge in terms of current-voltage relationships of positive and negative coronas of the corona-wire charger are also presented and discussed. The charging current and ion concentration in the charging zone increased monotonically with corona voltage. The negative corona showed higher current than the positive corona. At the same corona voltages, the current in the discharge zone is about 600 times larger than the charging current. The ion number concentrations ranged within approximately $5.0{\times}10^{10}$ to $1.24{\times}10^{16}$ and $4.5{\times}10^{12}$ to $2{\times}10^{16}$ ions/$m^3$ in the discharge and charging zones, respectively. A numerical model is used to predict the behavior of the electric potential lines. Numerical results of ion penetration through the inner electrode are in good agreement with the experimental results.

Corona Cage Simulation on Environmental Characteristics Caused by the Ion flow of Candidated Conductor Bundles for HVDC Overhead Transmission (초고압 직류 가공송전 후보 도체방식의 이온류 환경특성 코로나 케이지 모의시험)

  • Ju, Mun-No;Yang, Kwang-Ho;Lee, Dong-Il;Shin, Koo-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1791-1795
    • /
    • 2007
  • Small ions generated at conductor corona sources remain in the atmosphere until they recombine with ions of opposite polarity, attach to aerosols, or make contact with an object. Ion current density is major factor to design conductor configuration of DC overhead transmission line. Several techniques have been used to measure the ion current of HVDC overhead transmission line. In this study, the ion current density was measured by a plate electrode made of a metal flat board at DC corona cage. The sensitivity of the plate electrode is $0.156uA/m^2/V$. To obtain an useful database on corona discharge, it is necessary to do corona test on several kinds of conductor bundles. Therefore, a number of experiments were conducted on several kinds of conductor bundles. To reliably analyze ion effects, corona cage test data were obtained over a long period of time under various weather conditions and expressed as a statistical distribution. Ion current density distribution in foul weather shows a significant increase in levels over the corresponding fair weather. Based on this results, we evaluated the environmental characteristic caused by ion flow of three candidated conductor bundles.

Corona Discharge and Ozone Generation Characteristics of a Wire-to-Wire Gap with a Ferroelectric Pellet Bed (강유전체 충진 선대선 방전갭의 코로나 방전 및 오존 발생특성)

  • Shin, Jung-Min;Bae, Chang-Hwan;Ahn, Chang-Jin;Lee, Jong-Hoon;Moon, Jae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1873-1875
    • /
    • 2003
  • Surface corona discharge characteristics of a ac corona charged ferroelectric pellet barrier have been investigated experimentally. Electric charged stored on the surfaces of the ferroelectric pellets by a at corona discharge provide partial electric fields on the surfaces of the ferroelectric pellets, which could generate surface corona discharges on the ferroelectric pellets. This system utilizes both the surface discharges on the ferroelectric pellet barrier and the corona discharge between wire electrodes. As a result, in the case of the corona discharge with the ferroelectric pellet barrier, the mean corona current and ozone generation increase greatly, and the surface discharges on the ferroelectric pellets can be generated efficiently. It is also found that, the ferroelectric pellet barrier discharge reactor had better discharge characteristics for plasma generation than the wire-to-wire discharge reactor without pellets.

  • PDF

Location and Frequency Domain Detection of Corona Discharge Point in Oil Using AE Sensor (AE센서를 이용한 유중 코로나방전점 위치 및 주파수 영역 검출)

  • 이상우;김성훈;김인식;김기채;박원주;이광식;이동인
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.127-131
    • /
    • 1999
  • In this paper, using a wide-band AE sensor with the frequency range from 100[kHz], the frequency spectra of AE signals generated from the corona discharges of the needle-plane electrode was analyzed to determine the proper ultrasonic sensor. We also examined the relationship between the magnitude of corona discharge and the magnitude of AE signals in peak-to-peak value under the application of 60[Hz] AC high-voltage in oil. From these results, the main frequency spectra of AE signals emitted from the corona discharges of the needle-plane gap were found to be 130[kHz] by the fast fourier transform. The magnitude of AE signals was proportional to the magnitude of corona discharge and discharge current pulse with increasing the applied voltages. Also the detection of corona discharge point location by AE signals was found to be possible by using two sensors.

  • PDF