• Title/Summary/Keyword: Wireless-power communication networks

Search Result 419, Processing Time 0.032 seconds

On the Handling of Node Failures: Energy-Efficient Job Allocation Algorithm for Real-time Sensor Networks

  • Karimi, Hamid;Kargahi, Mehdi;Yazdani, Nasser
    • Journal of Information Processing Systems
    • /
    • v.6 no.3
    • /
    • pp.413-434
    • /
    • 2010
  • Wireless sensor networks are usually characterized by dense deployment of energy constrained nodes. Due to the usage of a large number of sensor nodes in uncontrolled hostile or harsh environments, node failure is a common event in these systems. Another common reason for node failure is the exhaustion of their energy resources and node inactivation. Such failures can have adverse effects on the quality of the real-time services in Wireless Sensor Networks (WSNs). To avoid such degradations, it is necessary that the failures be recovered in a proper manner to sustain network operation. In this paper we present a dynamic Energy efficient Real-Time Job Allocation (ERTJA) algorithm for handling node failures in a cluster of sensor nodes with the consideration of communication energy and time overheads besides the nodes' characteristics. ERTJA relies on the computation power of cluster members for handling a node failure. It also tries to minimize the energy consumption of the cluster by minimum activation of the sleeping nodes. The resulting system can then guarantee the Quality of Service (QoS) of the cluster application. Further, when the number of sleeping nodes is limited, the proposed algorithm uses the idle times of the active nodes to engage a graceful QoS degradation in the cluster. Simulation results show significant performance improvements of ERTJA in terms of the energy conservation and the probability of meeting deadlines compared with the other studied algorithms.

Optimal Bit Allocation Adaptive Modulation Algorithm for MIMO System

  • Fan, Lingyan;He, Chen;Feng, Guorui
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.136-140
    • /
    • 2007
  • In this paper, an adaptive minimum transmit power modulation scheme under constant data rate and fixed bit error rate (BER) for the multiple-input multiple-output (MIMO) system is proposed. It adjusts the modulation order and allocates the transmit power to each spatial sub-channel when meeting the user's requirements at the cost of minimum transmission power. Compared to the other algorithm, it can obtain good performance with lower computational complexity and can be applied to the wireless communication system. Computer simulation results present the efficiency of the proposed scheme. And its performance under different channel condition has been compared with the other algorithm.

Energy-Efficient Voice Data Broadcast Method in Wireless Personal Area Networks for IoT (IoT-WPAN 환경에서 에너지 효율적 음성 데이터 Broadcast 기법)

  • Lee, Jaeho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.11
    • /
    • pp.2178-2187
    • /
    • 2015
  • Bluetooth Low Energy (Bluetooth LE) is a representative break-through communication technology for wireless personal area networks on nowaday. In this environment, most of significant performance should be aiming to energy efficiency due to the policy for manufacturing light-weighted communication devices derived from requirement of world IoT market, and many researches have been developed to satisfy this requirement. While Bluetooth LE has been leading the low power communication technology required from the current market by employing duty cycle and frequency hopping approaches, it couldn't address the problem of reliability on broadcast transmissions. The main goal of this paper is aiming to addressing this problem by suggesting a new method. Furthermore analytic evaluations would also be proceeded to find objective results in the view point of broadcast transmission efficiency from Master device.

A Method of Improving Plan for The Local City Competitive Power Utilizing by Private Communication Networks in An Ubiquitous-City RFID Wireless Infra (U-City RFID무선인프라 자가통신네트워크를 연계한 지방자치 도시경쟁력 제고방안)

  • Lee, Bong-Choon;Ha, Deock-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.657-662
    • /
    • 2009
  • The international society under the internet technology have been declining boundaries of the global economy. After this step, a social revolution will be happen from the ubiquitous technology which gives objects intelligence to serve people. And then it is expected that every part of a city competitive power is defined by both in quality and in quantity of the ubiquitous information unit in the future. On this score, now each nation is trying to set relative services and broadband networks to lead the ubiquitous industry. Therefore this paper analyzed about the progress and prospect of a local U-city plan in our nation. And than we propose a method of configurating broadband self-communication network on the base of cost and utilization Especially we propose a new city development model which use U-city and self-communication network to improve a city competitive power.

  • PDF

Measurement Allocation by Shapley Value in Wireless Sensor Networks

  • Byun, Sang-Seon
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.1
    • /
    • pp.38-42
    • /
    • 2018
  • In this paper, we consider measurement allocation problem in a spatially correlated sensor field. Our goal is to determine the probability of each sensor's being measured based on its contribution to the estimation reliability; it is desirable that a sensor improving the estimation reliability is measured more frequently. We consider a spatial correlation model of a sensor field reflecting transmission power limit, noise in measurement and transmission channel, and channel attenuation. Then the estimation reliability is defined distortion error between event source and its estimation at sink. Motivated by the correlation nature, we model the measurement allocation problem into a cooperative game, and then quantify each sensor's contribution using Shapley value. Against the intractability in the computation of exact Shapley value, we deploy a randomized method that enables to compute the approximate Shapley value within a reasonable time. Besides, we envisage a measurement scheduling achieving the balance between network lifetime and estimation reliability.

Optimizing Network Lifetime of RPL Based IOT Networks Using Neural Network Based Cuckoo Search Algorithm

  • Prakash, P. Jaya;Lalitha, B.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.255-261
    • /
    • 2022
  • Routing Protocol for Low-Power and Lossy Networks (RPLs) in Internet of Things (IoT) is currently one of the most popular wireless technologies for sensor communication. RPLs are typically designed for specialized applications, such as monitoring or tracking, in either indoor or outdoor conditions, where battery capacity is a major concern. Several routing techniques have been proposed in recent years to address this issue. Nevertheless, the expansion of the network lifetime in consideration of the sensors' capacities remains an outstanding question. In this research, aANN-CUCKOO based optimization technique is applied to obtain a more efficient and dependable energy efficient solution in IOT-RPL. The proposed method uses time constraints to minimise the distance between source and sink with the objective of a low-cost path. By considering the mobility of the nodes, the technique outperformed with an efficiency of 98% compared with other methods. MATLAB software is used to simulate the proposed model.

Efficient Power Allocation Algorithm for Wireless Networks (무선망의 효율적 전력 할당 알고리즘)

  • Ahn, Hong-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.103-108
    • /
    • 2016
  • In communication systems the solution of the problem of maximizing the mutual information between the input and output of a channel composed of several subchannels under total power constraint has a waterfilling structure. OFDM and MIMO can be decomposed into parallel subchannels with CSI. Waterfilling solves the problem of optimal power allocation to these subchannels to achieve the rate approaching the channel capacity under total power constraint. In waterfilling, more power is alloted to good channels(high SNR) and less or no power to bad channels to increase the rate of good channels, resulting in channel capacity. Waterfilling finds the exact water level satisfying the power constraint employing an iterative algorithm to estimate and update the water level. In this process computation of partial sums of inverse of square of subchannel gain is repeatedly required. In this paper we reduced the computation time of waterfilling algorithm by replacing the partial sum computation with reference to an array which contains the precomputed partial sums in initialization phase.

Performance Analysis of Co- and Cross-tier Device-to-Device Communication Underlaying Macro-small Cell Wireless Networks

  • Li, Tong;Xiao, Zhu;Georges, Hassana Maigary;Luo, Zhinian;Wang, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1481-1500
    • /
    • 2016
  • Device-to-Device (D2D) communication underlaying macro-small cell networks, as one of the promising technologies in the era of 5G, is able to improve spectral efficiency and increase system capacity. In this paper, we model the cross- and co-tier D2D communications in two-tier macro-small cell networks. To avoid the complicated interference for cross-tier D2D, we propose a mode selection scheme with a dedicated resource sharing strategy. For co-tier D2D, we formulate a joint optimization problem of power control and resource reuse with the aim of maximizing the overall outage capacity. To solve this non-convex optimization problem, we devise a heuristic algorithm to obtain a suboptimal solution and reduce the computational complexity. System-level simulations demonstrate the effectiveness of the proposed method, which can provide enhanced system performance and guarantee the quality-of-service (QoS) of all devices in two-tier macro-small cell networks. In addition, our study reveals the high potential of introducing cross- and co-tier D2D in small cell networks: i) cross-tier D2D obtains better performance at low and medium small cell densities than co-tier D2D, and ii) co-tier D2D achieves a steady performance improvement with the increase of small cell density.

Energy Harvesting Technique for Efficient Wireless Cognitive Sensor Networks Based on SWIPT Game Theory

  • Mukhlif, Fadhil;Noordin, Kamarul Ariffin Bin;Abdulghafoor, Omar B.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2709-2734
    • /
    • 2020
  • The growing demand to make wireless data services 5G compatible has necessitated the development of an energy-efficient approach for an effective new wireless environment. In this paper, we first propose a cognitive sensor node (CSN) based game theory for deriving energy via a primary user-transmitted radio frequency signal. Cognitive users' time was segmented into three phases based on a time switching protocol: energy harvest, spectrum sensing and data transmission. The proposed model chooses the optimal energy-harvesting phase as the effected factor. We further propose a distributed energy-harvesting model as a utility function via pricing techniques. The model is a non-cooperative game where players can increase their net benefit in a selfish manner. Here, the price is described as a function pertaining to transmit power, which proves that the proposed energy harvest game includes Nash Equilibrium and is also unique. The best response algorithm is used to achieve the green connection between players. As a result, the results obtained from the proposed model and algorithm show the advantages as well as the effectiveness of the proposed study. Moreover, energy consumption was reduced significantly (12%) compared to the benchmark algorithm because the proposed algorithm succeeded in delivering energy in micro which is much better compared to previous studies. Considering the reduction and improvement in power consumption, we could say the proposed model is suitable for the next wireless environment represented in 5G.

Adaptive Power allocation inenergy-constrained wireless ad-hoc networks (전력 제한된 무선 애드혹 네트워크에서의 적응적 전력할당기법)

  • Gao, Xiang;Park, Hyung-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.336-342
    • /
    • 2008
  • We proposed a simple power allocation scheme to maximize network lifetime for "amplify and forward(AF)" and "decode and forward(DF)". To maximize network lifetime, it is important to allocate power fairly among nodes in a network as well as to minimize total transmitted power. In the proposed scheme, the allocated power is proportional to the residual power and also satisfies the required SNR at destination node. In this paper, we calculate power allocation in model of AF and DF. We evaluated the proposed power allocation scheme using extensive simulation and simulation results show that proposed power allocation obtains much longer network lifetime than the equal power allocation.