• Title/Summary/Keyword: Wireless sensor networks security

Search Result 280, Processing Time 0.028 seconds

A Hybrid Adaptive Security Framework for IEEE 802.15.4-based Wireless Sensor Networks

  • Shon, Tae-Shik;Park, Yong-Suk
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.6
    • /
    • pp.597-611
    • /
    • 2009
  • With the advent of ubiquitous computing society, many advanced technologies have enabled wireless sensor networks which consist of small sensor nodes. However, the sensor nodes have limited computing resources such as small size memory, low battery life, short transmission range, and low computational capabilities. Thus, decreasing energy consumption is one of the most significant issues in wireless sensor networks. In addition, numerous applications for wireless sensor networks are recently spreading to various fields (health-care, surveillance, location tracking, unmanned monitoring, nuclear reactor control, crop harvesting control, u-city, building automation etc.). For many of them, supporting security functionalities is an indispensable feature. Especially in case wireless sensor networks should provide a sufficient variety of security functions, sensor nodes are required to have more powerful performance and more energy demanding features. In other words, simultaneously providing security features and saving energy faces a trade-off problem. This paper presents a novel energy-efficient security architecture in an IEEE 802.15.4-based wireless sensor network called the Hybrid Adaptive Security (HAS) framework in order to resolve the trade off issue between security and energy. Moreover, we present a performance analysis based on the experimental results and a real implementation model in order to verify the proposed approach.

Survey on Security in Wireless Sensor

  • Li, Zhijun;Gong, Guang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.6B
    • /
    • pp.233-248
    • /
    • 2008
  • Advances in electronics and wireless communication technologies have enabled the development of large-scale wireless sensor networks (WSNs). There are numerous applications for wireless sensor networks, and security is vital for many of them. However, WSNs suffer from many constraints, including low computation capability, small memory, limited energy resources, susceptibility to physical capture, and the lack of infrastructure, all of which impose unique security challenges and make innovative approaches desirable. In this paper, we present a survey on security issues in wireless sensor networks. We address several network models for security protocols in WSNs, and explore the state of the art in research on the key distribution and management schemes, typical attacks and corresponding countermeasures, entity and message authentication protocols, security data aggregation, and privacy. In addition, we discuss some directions of future work.

Analyses of Vulnerability and Security Mechanisms in Wireless Sensor Networks (무선센서네트워크에서의 취약성 및 보안 메카니즘의 분석)

  • Kim, Jung-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.805-808
    • /
    • 2009
  • Security has become a major concern for many real world applications for wireless sensor networks (WSN). In this domain, many security solutions have been proposed. Usually, all these approaches are based on wellknown cryptographic algorithms. At the same time, performance studies have shown that the applicability of sensor networks strongly depends on effective routing decisions or energy aware wireless communication. In this paper, we analyses vulnerability and security mechanisms in wireless sensor networks.

  • PDF

Analyses of Key Management Protocol for Wireless Sensor Networks in Wireless Sensor Networks (무선 센서 네트워크망에서의 효율적인 키 관리 프로토콜 분석)

  • Kim, Jung-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.799-802
    • /
    • 2005
  • In this paper, we analyses of Key Management Protocol for Wireless Sensor Networks in Wireless Sensor Networks. Wireless sensor networks have a wide spectrum of civil military application that call for security, target surveillance in hostile environments. Typical sensors possess limited computation, energy, and memory resources; therefore the use of vastly resource consuming security mechanism is not possible. In this paper, we propose a cryptography key management protocol, which is based on identity based symmetric keying.

  • PDF

Communication Pattern Based Key Establishment Scheme in Heterogeneous Wireless Sensor Networks

  • Kim, Daehee;Kim, Dongwan;An, Sunshin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1249-1272
    • /
    • 2016
  • In this paper, we propose a symmetric key establishment scheme for wireless sensor networks which tries to minimize the resource usage while satisfying the security requirements. This is accomplished by taking advantage of the communication pattern of wireless sensor networks and adopting heterogeneous wireless sensor networks. By considering the unique communication pattern of wireless sensor networks due to the nature of information gathering from the physical world, the number of keys to be established is minimized and, consequently, the overhead spent for establishing keys decreases. With heterogeneous wireless sensor networks, we can build a hybrid scheme where a small number of powerful nodes do more works than a large number of resource-constrained nodes to provide enhanced security service such as broadcast authentication and reduce the burden of resource-limited nodes. In addition, an on-demand key establishment scheme is introduced to support extra communications and optimize the resource usage. Our performance analysis shows that the proposed scheme is very efficient and highly scalable in terms of storage, communication and computation overhead. Furthermore, our proposed scheme not only satisfies the security requirements but also provides resilience to several attacks.

Towards Choosing Authentication and Encryption: Communication Security in Sensor Networks

  • Youn, Seongwook;Cho, Hyun-chong
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1307-1313
    • /
    • 2017
  • Sensor networks are composed of provide low powered, inexpensive distributed devices which can be deployed over enormous physical spaces. Coordination between sensor devices is required to achieve a common communication. In low cost, low power and short-range wireless environment, sensor networks cope with significant resource constraints. Security is one of main issues in wireless sensor networks because of potential adversaries. Several security protocols and models have been implemented for communication on computing devices but deployment these models and protocols into the sensor networks is not easy because of the resource constraints mentioned. Memory intensive encryption algorithms as well as high volume of packet transmission cannot be applied to sensor devices due to its low computational speed and memory. Deployment of sensor networks without security mechanism makes sensor nodes vulnerable to potential attacks. Therefore, attackers compromise the network to accept malicious sensor nodes as legitimate nodes. This paper provides the different security models as a metric, which can then be used to make pertinent security decisions for securing wireless sensor network communication.

Security enhanced privacy-aware two-factor authentication protocol for wireless sensor networks (무선 센서 네트워크 환경을 위한 보안성이 향상된 프라이버시 보호형 two-factor 인증 프로토콜)

  • Choi, Younsung;Chang, Beom-Hwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.4
    • /
    • pp.71-84
    • /
    • 2019
  • Various researchers conducted the research on two-factor authentication suitable for wireless sensor networks (WSNs) after Das first proposed two-factor authentication combining the smart card and password. After then, To improve the security of user authentication, elliptic curve cryptography(ECC)-based authentication protocols have been proposed. Jiang et al. proposed a privacy-aware two-factor authentication protocol based on ECC for WSM for resolving various problems of ECC-based authentication protocols. However, Jiang et al.'s protocol has the vulnerabilities on a lack of mutual authentication, a risk of SID modification and a lack of sensor anonymity, and user's ID exposed on sensor node Therefore, this paper proposed security enhanced privacy-aware two-factor authentication protocol for wireless sensor networks to solve the problem of Jiang et al.'s protocol, and security analysis was conducted for the proposed protocol.

TriSec: A Secure Data Framework for Wireless Sensor Networks Using Authenticated Encryption

  • Kumar, Pardeep;Cho, Sang-Il;Lee, Dea-Seok;Lee, Young-Dong;Lee, Hoon-Jae
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.129-135
    • /
    • 2010
  • Wireless sensor networks (WSNs) are an emerging technology and offers economically viable monitoring solution to many challenging applications. However, deploying new technology in hostile environment, without considering security in mind has often proved to be unreasonably unsecured. Apparently, security techniques face many critical challenges in WSNs like data security and secrecy due to its hostile deployment nature. In order to resolve security in WSNs, we propose a novel and efficient secure framework called TriSec: a secure data framework for wireless sensor networks to attain high level of security. TriSec provides data confidentiality, authentication and data integrity to sensor networks. TriSec supports node-to-node encryption using PingPong-128 stream cipher based-privacy. A new PingPong-MAC (PP-MAC) is incorporated with PingPong stream cipher to make TriSec framework more secure. PingPong-128 is fast keystream generation and it is very suitable for sensor network environment. We have implemented the proposed scheme on wireless sensor platform and our result shows their feasibility.

Analyses of Trend of Threat of Security in Internet of Things (사물 인터넷망에서의 보안 위협 기술 동향 분석)

  • Shin, Yoon-gu;Jung, Sungha;Do, Tahoon;Kim, Jung Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.895-896
    • /
    • 2015
  • With the development of sensor, wireless mobile communication, embedded system and cloud computing, the technologies of Internet of Things have been widely used in logistics, Smart devices security, intelligent building and o on. Bridging between wireless sensor networks with traditional communication networks or Internet, IoT gateway plays n important role in IoT applications, which facilitates the integration of wireless sensor networks and mobile communication networks or Internet, and the management and control with wireless sensor networks. The IoT Gateway is a key component in IoT application systems but It has lot of security issues. We analyzed the trends of security and privacy matters.

  • PDF

A Survey on Key Management Strategies for Different Applications of Wireless Sensor Networks

  • Raazi, Syed Muhammad Khaliq-Ur-Rahman;Lee, Sung-Young
    • Journal of Computing Science and Engineering
    • /
    • v.4 no.1
    • /
    • pp.23-51
    • /
    • 2010
  • Wireless Sensor Networks (WSN) have proved to be useful in applications that involve monitoring of real-time data. There is a wide variety of monitoring applications that can employ Wireless Sensor Network. Characteristics of a WSN, such as topology and scale, depend upon the application, for which it is employed. Security requirements in WSN vary according to the application dependent network characteristics and the characteristics of an application itself. Key management is the most important aspect of security as some other security modules depend on it. We discuss application dependent variations in WSN, corresponding changes in the security requirements of WSN and the applicability of existing key management solutions in each scenario.