• Title/Summary/Keyword: Wireless sensor networks

Search Result 2,275, Processing Time 0.034 seconds

Fundamental Research of Strain-based Wireless Sensor Network for Structural Health Monitoring of Highrise building (초고층 건물의 건전성 감시를 위한 변형률 기반 무선 센서 네트워크 기법의 기초적 연구)

  • Jung, Eun-Su;Park, Hyo-Seon;Choi, Suk-Won;Cha, Ho-Jung
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.429-432
    • /
    • 2007
  • For smart structure technologies, the interests in wireless sensor networks for structural health monitoring are growing. The wireless sensor networks reduce the installation of the wire embedded in the whole structure and save the costs. But the wireless sensor networks have lots of limits and there are lots of researches and developments of wireless sensor and the network for data process. Most of the researches of wireless sensor network is applying to the civil engineering structure and the researches for the highrise building are required. And strain-based SHM gives the local damage information of the structures which acceleration-based SHM can not. In this paper, concept of wireless sensor network for structural health monitoring of highrise building is suggested. And verifying the feasibility of the strain-based SHM a strain sensor board has developed and tested by experiments.

  • PDF

Analyses of Vulnerability and Security Mechanisms in Wireless Sensor Networks (무선센서네트워크에서의 취약성 및 보안 메카니즘의 분석)

  • Kim, Jung-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.805-808
    • /
    • 2009
  • Security has become a major concern for many real world applications for wireless sensor networks (WSN). In this domain, many security solutions have been proposed. Usually, all these approaches are based on wellknown cryptographic algorithms. At the same time, performance studies have shown that the applicability of sensor networks strongly depends on effective routing decisions or energy aware wireless communication. In this paper, we analyses vulnerability and security mechanisms in wireless sensor networks.

  • PDF

Evaluating an (m, k)-firm Deadline Real-time Stream Based on a Reliable Transport Protocol in Wireless Sensor Networks

  • Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.2
    • /
    • pp.129-134
    • /
    • 2012
  • As application-specific requirements for wireless sensor networks emerge, both real-time and reliable communications become major research challenges in wireless sensor networks due to the many constraints on nodes and wireless links. To support these services, several protocols have been proposed. However, since most of them were designed as well as developed for general purpose applications, it is not recommended that they be directly adapted to applications with special requirements. In this paper, we propose a way to extend the current reliable transport protocol to cover a special real-time service, the (m,k)-firm deadline stream, in wireless sensor networks. While the proposed scheme is basically built on the PSFQ protocol for reliability, some features have been newly developed to support the (m,k)-firm stream efficiently. Finally, simulation results are given to demonstrate the feasibility of the proposed scheme in high traffic and with failed links.

Transaction Signing-based Authentication Scheme for Protecting Sinkhole Attack in Directed Diffusion based Wireless Sensor Networks (디렉티드 디퓨젼 기반의 무선 센서 네트워크에서의 싱크홀 공격을 막기 위한 트랜잭션 서명기법에 관한 연구)

  • Kim, Tae Kyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.3
    • /
    • pp.31-36
    • /
    • 2010
  • In this paper, We propose a transaction signing-based authentication scheme for protecting sinkhole attacks in wireless sensor networks. Sinkhole attack makes packets that flow network pass through attacker. So, Sinkhole attack can be extended to various kind of attacks such as denial of service attacks, selective delivery or data tamper etc. We analyze sinkhole attack methods in directed diffusion based wireless sensor networks. For the purpose of response to attack method, Transaction signing-based authentication scheme is proposed. This scheme can work for those sensor networks which use directed diffusion based wireless sensor networks. The validity of proposed scheme is provided by BAN logic.

Analytic Model of Energy of Router in Wireless Sensor Networks

  • Lee, Dong-Chun
    • Convergence Security Journal
    • /
    • v.7 no.4
    • /
    • pp.43-50
    • /
    • 2007
  • Electric quantity of sensor nodes is extremely limited, and the battery replacement is very difficult in wireless sensor networks. This paper proposes analytic model on energy loss in different route structure, which it is based upon the data-centric storage and the directed diffusion is energy consumption in the wireless sensor network.

  • PDF

A Dynamic Routing Protocol for Energy Effectiveness in Wireless Sensor Networks (무선 센서 네트워크에서의 에너지 효율 개선을 위한 동적 라우팅 프로토콜)

  • Oh, Sei-Woong;Jun, Sung-Taeg
    • Journal of Information Technology Services
    • /
    • v.6 no.1
    • /
    • pp.141-149
    • /
    • 2007
  • Sensor node's mobility brings new challenges to data dissemination in large sensor networks. Frequent location updates of sensor nodes can lead to both excessive drain of sensor's limited battery supply and increased collisions in wireless transmissions. Conventional studies for routing protocols in wireless sensor networks are not enough to cover energy consumption and migration of sensor nodes. This study proposes a dynamic routing protocol based on the SPIN considering energy consumption and the migration, and also shows the effectiveness of the proposed routing protocol.

Analysis of Channel Access Delay in CR-MAC Protocol for Ad Hoc Cognitive Radio Wireless Sensor Networks without a Common Control Channel

  • Joshi, Gyanendra Prasad;Nam, Seung Yeob;Acharya, Srijana;Kim, Sung Won
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.911-923
    • /
    • 2014
  • Ad hoc cognitive radio wireless sensor networks allow secondary wireless sensor nodes to recognize spectrum opportunities and transmit data. Most existing protocols proposed for ad hoc cognitive radio wireless sensor networks require a dedicated common control channel. Allocating one channel just for control packet exchange is a waste of resources for channel-constrained networks. There are very few protocols that do not rely on a common control channel and that exchange channel-negotiation control packets during a pre-allocated time on the data channels. This, however, can require a substantial amount of time to access the channel when an incumbent is present on the channel, where the nodes are intended to negotiate for the data channel. This study examined channel access delay on cognitive radio wireless sensor networks that have no dedicated common control channel.

Wireless sensor networks for long-term structural health monitoring

  • Meyer, Jonas;Bischoff, Reinhard;Feltrin, Glauco;Motavalli, Masoud
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.263-275
    • /
    • 2010
  • In the last decade, wireless sensor networks have emerged as a promising technology that could accelerate progress in the field of structural monitoring. The main advantages of wireless sensor networks compared to conventional monitoring technologies are fast deployment, small interference with the surroundings, self-organization, flexibility and scalability. These features could enable mass application of monitoring systems, even on smaller structures. However, since wireless sensor network nodes are battery powered and data communication is the most energy consuming task, transferring all the acquired raw data through the network would dramatically limit system lifetime. Hence, data reduction has to be achieved at the node level in order to meet the system lifetime requirements of real life applications. The objective of this paper is to discuss some general aspects of data processing and management in monitoring systems based on wireless sensor networks, to present a prototype monitoring system for civil engineering structures, and to illustrate long-term field test results.

Fuzzy based Energy-Efficient Adaptive Routing Algorithm for Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적인 퍼지 기반 적응형 라우팅 알고리즘 및 시뮬레이션)

  • Hong, Soon-Oh;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.4
    • /
    • pp.95-106
    • /
    • 2005
  • Recent advances in wireless sensor networks have led to many routing protocols designed for energy-efficiency in wireless sensor networks. Despite that many routing protocols have been proposed in wireless sensor networks, a single routing protocol cannot be energy-efficient if the environment of the sensor network varies. This paper presents a fuzzy logic based Adaptive Routing (FAR) algorithm that provides energy-efficiency by dynamically changing protocols installed at the sensor nodes. The algorithm changes protocols based on the output of the fuzzy logic which is the fitness level of the protocols for the environment. A simulation is performed to show the usefulness of the proposed algorithm.

  • PDF

A Danger Theory Inspired Protection Approach for Hierarchical Wireless Sensor Networks

  • Xiao, Xin;Zhang, Ruirui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2732-2753
    • /
    • 2019
  • With the application of wireless sensor networks in the fields of ecological observation, defense military, architecture and urban management etc., the security problem is becoming more and more serious. Characteristics and constraint conditions of wireless sensor networks such as computing power, storage space and battery have brought huge challenges to protection research. Inspired by the danger theory in biological immune system, this paper proposes an intrusion detection model for wireless sensor networks. The model abstracts expressions of antigens and antibodies in wireless sensor networks, defines meanings and functions of danger signals and danger areas, and expounds the process of intrusion detection based on the danger theory. The model realizes the distributed deployment, and there is no need to arrange an instance at each sensor node. In addition, sensor nodes trigger danger signals according to their own environmental information, and do not need to communicate with other nodes, which saves resources. When danger is perceived, the model acquires the global knowledge through node cooperation, and can perform more accurate real-time intrusion detection. In this paper, the performance of the model is analyzed including complexity and efficiency, and experimental results show that the model has good detection performance and reduces energy consumption.