• Title/Summary/Keyword: Wireless multimedia sensor networks

Search Result 131, Processing Time 0.043 seconds

A Survey on Transport Protocols for Wireless Multimedia Sensor Networks

  • Costa, Daniel G.;Guedes, Luiz Affonso
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.241-269
    • /
    • 2012
  • Wireless networks composed of multimedia-enabled resource-constrained sensor nodes have enriched a large set of monitoring sensing applications. In such communication scenario, however, new challenges in data transmission and energy-efficiency have arisen due to the stringent requirements of those sensor networks. Generally, congested nodes may deplete the energy of the active congested paths toward the sink and incur in undesired communication delay and packet dropping, while bit errors during transmission may negatively impact the end-to-end quality of the received data. Many approaches have been proposed to face congestion and provide reliable communications in wireless sensor networks, usually employing some transport protocol that address one or both of these issues. Nevertheless, due to the unique characteristics of multimedia-based wireless sensor networks, notably minimum bandwidth demand, bounded delay and reduced energy consumption requirement, communication protocols from traditional scalar wireless sensor networks are not suitable for multimedia sensor networks. In the last decade, such requirements have fostered research in adapting existing protocols or proposing new protocols from scratch. We survey the state of the art of transport protocols for wireless multimedia sensor networks, addressing the recent developments and proposed strategies for congestion control and loss recovery. Future research directions are also discussed, outlining the remaining challenges and promising investigation areas.

A Multimedia Data Compression Scheme for Disaster Prevention in Wireless Multimedia Sensor Networks

  • Park, Jun-Ho;Lim, Jong-Tae;Yoo, Jae-Soo;Oh, Yong-Sun;Oh, Sang-Hoon;Min, Byung-Won;Park, Sun-Gyu;Noh, Hwang-Woo;Hayashida, Yukuo
    • International Journal of Contents
    • /
    • v.11 no.2
    • /
    • pp.31-36
    • /
    • 2015
  • Recent years have seen a significant increase in demand for multimedia data over wireless sensor networks for monitoring applications that utilize sensor nodes to collect multimedia data, including sound and video. However, the multimedia streams generate a very large amount of data. When data transmission schemes for traditional wireless sensor networks are applied in wireless multimedia sensor networks, the network lifetime significantly decreases due to the excessive energy consumption of specific nodes. In this paper, we propose a data compression scheme that implements the Chinese remainder theorem to a wireless multimedia sensor network. The proposed scheme uses the Chinese Remainder Theorem (CRT) to compress and split multimedia data, and it then transmits the bit-pattern packets of the remainder to the base station. As a result, the amount of multimedia data that is transmitted is reduced. The superiority of our proposed scheme is demonstrated by comparing its performance to that of an existing scheme. The results of our experiment indicate that our proposed scheme significantly increased the compression ratio and reduced the compression operation in comparison to those of existing compression schemes.

Bayesian Statistical Modeling of System Energy Saving Effectiveness for MAC Protocols of Wireless Sensor Networks: The Case of Non-Informative Prior Knowledge

  • Kim, Myong-Hee;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.6
    • /
    • pp.890-900
    • /
    • 2010
  • The Bayesian networks methods provide an efficient tool for performing information fusion and decision making under conditions of uncertainty. This paper proposes Bayes estimators for the system effectiveness in energy saving of the wireless sensor networks by use of the Bayesian method under the non-informative prior knowledge about means of active and sleep times based on time frames of sensor nodes in a wireless sensor network. And then, we conduct a case study on some Bayesian estimation models for the system energy saving effectiveness of a wireless sensor network, and evaluate and compare the performance of proposed Bayesian estimates of the system effectiveness in energy saving of the wireless sensor network. In the case study, we have recognized that the proposed Bayesian system energy saving effectiveness estimators are excellent to adapt in evaluation of energy efficiency using non-informative prior knowledge from previous experience with robustness according to given values of parameters.

Interference Aware Multipath Routing in Multi-rate Wireless Sensor Networks

  • Lee, Kang Gun;Park, Hyung Kun
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.8
    • /
    • pp.909-914
    • /
    • 2015
  • In wireless sensor networks, sensor nodes have a short transmission range and data is transferred from source to destination node using the multi-hop transmission. Sensor nodes are powered by battery and the link qualities are different, and the routing protocol in the wireless sensor network is one of the important technical issues. Multipath routing was proposed to reduce the data congestion and increase data throughput. In the multipath routing, however, each path can be interfered by the other path, and it can aggravate network performance. In this paper, we propose the multipath routing scheme for multi-rate wireless sensor networks. The multipath routing selects transmission paths to minimize transmission delay and path interference.

An Energy-Aware Cooperative Communication Scheme for Wireless Multimedia Sensor Networks (무선 멀티미디어 센서 네트워크에서 에너지 효율적인 협력 통신 방법)

  • Kim, Jeong-Oh;Kim, Hyunduk;Choi, Wonik
    • Journal of KIISE
    • /
    • v.42 no.5
    • /
    • pp.671-680
    • /
    • 2015
  • Numerous clustering schemes have been proposed to increase energy efficiency in wireless sensor networks. Clustering schemes consist of a hierarchical structure in the sensor network to aggregate and transmit data. However, existing clustering schemes are not suitable for use in wireless multimedia sensor networks because they consume a large quantity of energy and have extremely short lifetime. To address this problem, we propose the Energy-Aware Cooperative Communication (EACC) method which is a novel cooperative clustering method that systematically adapts to various types of multimedia data including images and video. An evaluation of its performance shows that the proposed method is up to 2.5 times more energy-efficient than the existing clustering schemes.

Wavelet Based Compression Technique for Efficient Image Transmission in the Wireless Multimedia Sensor Networks (무선 멀티미디어 센서 네트워크에서 효율적인 이미지 전송을 위한 웨이블릿 기반 압축 기법)

  • Kwon, Young-Wan;Lee, Joa-Hyoung;Jung, In-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2323-2329
    • /
    • 2008
  • Advances in wireless communication and hardware technology have made it possible to manufacture high-performance tiny sensor nodes. More recently, the availability of inexpensive cameras modules that are able to capture multimedia data from the environment has fostered the development of Wireless Multimedia Sensor Networks(WMSNs). WMSN supplements the a advanced technique that senses, transmits, and processes the multimedia contents upon the text based traditional wireless sensor network. Since the amount of data which the multimedia contents have, is significantly larger than that of text based data, multimedia contents require lots of computing power and high network bandwidth. To process the multimedia contents on the wireless sensor node which has very limited computing power and energy, a technique for WMSN should take account of computing resource and efficient transmission. In the paper, we propose a new image compression technique YWCE for efficient compression and transmission of image data in WMSN. YWCE introduces 4 type of technique for motion estimation and compensation based on the Resolution Scalability of Wavelet. Experimental result shows that YWCE has high compression performance with different set of 4 type.

A New Cross-Layer QoS-Provisioning Architecture in Wireless Multimedia Sensor Networks

  • Sohn, Kyungho;Kim, Young Yong;Saxena, Navrati
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5286-5306
    • /
    • 2016
  • Emerging applications in automation, medical imaging, traffic monitoring and surveillance need real-time data transmission over Wireless Sensor Networks (WSNs). Guaranteeing Quality of Service (QoS) for real-time traffic over WSNs creates new challenges. Rapid penetration of smart devices, standardization of Machine Type Communications (MTC) in next generation 5G wireless networks have added new dimensions in these challenges. In order to satisfy such precise QoS constraints, in this paper, we propose a new cross-layer QoS-provisioning strategy in Wireless Multimedia Sensor Networks (WMSNs). The network layer performs statistical estimation of sensory QoS parameters. Identifying QoS-routing problem with multiple objectives as NP-complete, it discovers near-optimal QoS-routes by using evolutionary genetic algorithms. Subsequently, the Medium Access Control (MAC) layer classifies the packets, automatically adapts the contention window, based on QoS requirements and transmits the data by using routing information obtained by the network layer. Performance analysis is carried out to get an estimate of the overall system. Through the simulation results, it is manifested that the proposed strategy is able to achieve better throughput and significant lower delay, at the expense of negligible energy consumption, in comparison to existing WMSN QoS protocols.

A Residual Power Estimation Scheme Using Machine Learning in Wireless Sensor Networks (센서 네트워크에서 기계학습을 사용한 잔류 전력 추정 방안)

  • Bae, Shi-Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.1
    • /
    • pp.67-74
    • /
    • 2021
  • As IoT(Internet Of Things) devices like a smart sensor have constrained power sources, a power strategy is critical in WSN(Wireless Sensor Networks). Therefore, it is necessary to figure out the residual power of each sensor node for managing power strategies in WSN, which, however, requires additional data transmission, leading to more power consumption. In this paper, a residual power estimation method was proposed, which uses ignorantly small amount of power consumption in the resource-constrained wireless networks including WSN. A residual power prediction is possible with the least data transmission by using Machine Learning method with some training data in this proposal. The performance of the proposed scheme was evaluated by machine learning method, simulation, and analysis.

An Energy-Efficient Dynamic Area Compression Scheme in Wireless Multimedia Sensor Networks (무선 멀티미디어 센서 네트워크에서 에너지 효율적인 동적 영역 압축 기법)

  • Park, Junho;Ryu, Eunkyung;Son, Ingook;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.12
    • /
    • pp.9-18
    • /
    • 2013
  • In recent years, the demands of multimedia data in wireless sensor networks have been significantly increased for the high-quality environment monitoring applications that utilize sensor nodes to collect multimedia data. However, since the amount of multimedia data is very large, the network lifetime and network performance are significantly reduced due to excessive energy consumption on particular nodes. In this paper, we propose an energy-efficient dynamic area compression scheme in wireless multimedia sensor networks. The proposed scheme minimizes the energy consumption in the huge multimedia data transmission process by compression using the Chinese Remainder Theorem(CRT) and dynamic area detection and division algorithm. Our experimental results show that our proposed scheme improves the data compression ratio by about 37% and reduces the amount of transmitted data by about 56% over the existing scheme on average. In addition, the proposed scheme increases network lifetime by about 14% over the existing scheme on average.

An Energy-efficient Pair-wise Time Synchronization Protocol for Wireless Networks (에너지 효율적인 무선 네트워크용 상호 시각 동기화 프로토콜)

  • Bae, Shi-Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.10
    • /
    • pp.1808-1815
    • /
    • 2016
  • TPSN(Timing-sync Protocol for Sensor Networks), the representative of time synchronization protocol, has been already developed to provide time synchronization among nodes in wireless sensor networks. Even though the TPSN's method has been referenced by so many other time synchronization schemes for resource-constrained networks like wireless sensor networks or low power personal area networks, it has some inefficiency in terms of power consumption and network-wide synchronization time (or called convergence time). The main reason is that each node in TPSN needs waiting delay to solve the collision problem due to simultaneous transmission among competing nodes, which causes more power consumption and longer network convergence time for a network-wide synchronization. In this paper an improved scheme is proposed by changing message exchange method among nodes. The proposed scheme not only shortens network-wide synchronization time, but also reduce collision traffic which lead to needless power consumption. The proposed scheme's performance has been evaluated and compared with an original scheme by simulation. The results are shown to be better than the original algorithm used in TPSN.