• Title/Summary/Keyword: Wireless mobile networks

Search Result 1,351, Processing Time 0.027 seconds

Design and Implementation of Multi-Sensor based Smart Sensor Network using Mobile Devices (모바일 디바이스를 사용한 멀티센서 기반 스마트 센서 네트워크의 설계 및 구현)

  • Koo, Bon-Hyun;Choi, Hyo-Hyun;Shon, Tae-Shik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.5
    • /
    • pp.1-11
    • /
    • 2008
  • Wireless Sensor Networks is applied to improvement of life convenience or service like U-City as well as environment pollution, tunnel and structural health monitoring, storm, and earthquake diagnostic system. To increase the usability of sensor data and applicability, mobile devices and their facilities allow the applications of sensor networks to give mobile users and actuators the results of event detection at anytime and anywhere. In this paper, we present MUSNEMO(Multi-sensor centric Ubiquitous Smart sensor NEtwork using Mobile devices) developed system for providing more efficient and valuable information services with a variety of mobile devices and network camera integrated to WSN. Our system is performed based on IEEE 802.15.4 protocol stack. To validate system usability, we built sensor network environments where were equipped with five application sensors such magnetic, photodiode, microphone, motion and vibration. We also built and tested proposed MUSNEMO to provide a novel model for event detection systems with mobile framework.

Intervenient Stackelberg Game based Bandwidth Allocation Scheme for Hierarchical Wireless Networks

  • Kim, Sungwook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4293-4304
    • /
    • 2014
  • In order to ensure the wireless connectivity and seamless service to mobile users, the next generation network system will be an integration of multiple wireless access networks. In a heterogeneous wireless access system, bandwidth allocation becomes crucial for load balancing to avoid network congestion and improve system utilization efficiency. In this article, we propose a new dynamic bandwidth allocation scheme for hierarchical wireless network systems. First, we derive a multi-objective decision criterion for each access point. Second, a bargaining strategy selection algorithm is developed for the dynamic bandwidth re-allocation. Based on the intervenient Stackelberg game model, the proposed scheme effectively formulates the competitive interaction situation between several access points. The system performance of proposed scheme is evaluated by using extensive simulations. With a simulation study, it is confirmed that the proposed scheme can achieve better performance than other existing schemes under widely diverse network environments.

Hybrid Mobile IP Protocol for Service Session Continuity between WiBro and HSDPA (WiBro와 HSDPA 망간 서비스 연속성을 제공하기 위한 Hybrid Mobil IP 프로토콜)

  • Kim, Sung-Jin;Choi, Woo-Jin
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.223-228
    • /
    • 2008
  • Recently, various types of wireless access networks, such as WLAN, WiBro and HSDPA, etc, have been successfully deployed by commercial service providers (i.e., KT, KTF). In this situation, there are many efforts to provide high quality of services to guarantee seamless mobility between heterogeneous networks. The IP layer mobility protocols are efficient mechanisms to provide seamless mobility between IP based heterogeneous networks as well as homogeneous networks. However, to apply IP mobility protocols in real heterogeneous networks (i.e., WiBro and HSDPA), we must consider not only the basic features of techniques of wireless access networks (i.e., Data rate, Coverage, Quality of Service) but also the problem of real environment of service provider (i.e., Expanse cost to change the access network). Due to this reason, it is difficult to satisfy required conditions by using only one IP mobility protocol in real heterogeneous networks. Therefore, in this paper, we propose an efficient mobility protocol to solve the complex problems that are occurred in real heterogeneous networks. The proposed protocol, so-called, "Hybrid Mobile IP" tries to provide a synergy effect by integrating Client Mobile IPv4 (CMIPv4) and Proxy Mobile IPv4 (PMIPv4), and using the two mobility protocols selectively according to the situation of real heterogeneous networks.

  • PDF

A Software Defined Networking Approach to Improve the Energy Efficiency of Mobile Wireless Sensor Networks

  • Aparicio, Joaquin;Echevarria, Juan Jose;Legarda, Jon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.2848-2869
    • /
    • 2017
  • Mobile Wireless Sensor Networks (MWSN) are usually constrained in energy supply, which makes energy efficiency a key factor to extend the network lifetime. The management of the network topology has been widely used as a mechanism to enhance the lifetime of wireless sensor networks (WSN), and this work presents an alternative to this. Software Defined Networking (SDN) is a well-known technology in data center applications that separates the data and control planes during the network management. This paper proposes a solution based on SDN that optimizes the energy use in MWSN. The network intelligence is placed in a controller that can be accessed through different controller gateways within a MWSN. This network intelligence runs a Topology Control (TC) mechanism to build a backbone of coordinator nodes. Therefore, nodes only need to perform forwarding tasks, they reduce message retransmissions and CPU usage. This results in an improvement of the network lifetime. The performance of the proposed solution is evaluated and compared with a distributed approach using the OMNeT++ simulation framework. Results show that the network lifetime increases when 2 or more controller gateways are used.

Inter-Cell Interference Management for Next-Generation Wireless Communication Systems

  • Kwon, Ho-Joong;Ko, Soo-Min;Seo, Han-Byul;Lee, Byeong-Gi
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.258-267
    • /
    • 2008
  • In this paper, we examine what changes the next-generation wireless communication systems will experience in terms of the technologies, services, and networks and, based on that, we investigate how the inter-cell interference management should evolve in various aspects. We identify that the main driving forces of the future changes involve the data-centric services, new dynamic service scenarios, all-IP core access networks, new physical-layer technologies, and heavy upload traffic. We establish that in order to cope with the changes, the next-generation inter-cell interference management should evolve to 1) set the objective of providing a maximal data rate, 2) take the form of joint management of power allocation and user scheduling, 3) operate in a fully distributed manner, 4) handle the time-varying channel conditions in mobile environment, 5) deal with the changes in interference mechanism triggered by the new physical-layer technologies, and 6) increase the spectral efficiency while avoiding centralized coordination of resource allocation of the users in the uplink channel.

Group Key Agreement Protocols for Combined Wired/Wireless Networks (유무선 통합 네트워크 환경에 적합한 그룹 키 동의 프로토콜)

  • Nam Junghyun;Kim Seungjoo;Won Dongho;Jang Chungryong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6C
    • /
    • pp.607-615
    • /
    • 2005
  • Group key agreement protocols are designed to allow a group of parties communicating over a public network to securely establish a common secret key. Over the years, a number of solutions to this problem have been proposed with varying degrees of complexity. However, there seems to have been no previous systematic look at the growing problem of key agreement over combined wired/wireless networks, consisting of both high-performance computing machines and low-power mobile devices. In this paper we present an efficient group key agreement scheme well suited for this networking environment. Our scheme meets efficiency, scalability, and all the desired security requirements.

An Adaptive Power Saving Mechanism in IEEE 802.11 Wireless IP Networks

  • Pack Sangheon;Choi Yanghee
    • Journal of Communications and Networks
    • /
    • v.7 no.2
    • /
    • pp.126-134
    • /
    • 2005
  • Reducing energy consumption in mobile hosts (MHs) is one of the most critical issues in wireles/mobile networks. IP paging protocol at network layer and power saving mechanism (PSM) at link layer are two core technologies to reduce the energy consumption of MHs. First, we investigate the energy efficiency of the current IEEE 802.11 power saving mechanism (PSM) when IP paging protocol is deployed over IEEE 802.11 networks. The result reveal that the current IEEE 802.11 PSM with a fixed wakeup interval (i.e., the static PSM) exhibits a degraded performance when it is integrated with IP paging protocol. Therefore, we propose an adaptive power saving mechanism in IEEE 802.11-based wireless IP networks. Unlike the static PSM, the adaptive PSM adjusts the wake-up interval adaptively depending on the session activity at IP layer. Specifically, the MH estimates the idle periods for incoming sessions based on the exponentially weighted moving average (EWMA) scheme and sets its wake-up interval dynamically by considering the estimated idle period and paging delay bound. For performance evaluation, we have conducted comprehensive simulations and compared the total cost and energy consumption, which are incurred in IP paging protocol in conjunction with various power saving mechanisms: The static PSM, the adaptive PSM, and the optimum PSM. Simulation results show that the adaptive PSM provides a closer performance to the optimum PSM than the static PSM.

An Efficient TCP Algorithm in Mobile ADHOC Networks (이동망 네트워크에서의 효율적인 TCP 알고리즘)

  • Hong, Sung-Hwa;Kim, Hoon-Ki
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.6
    • /
    • pp.73-81
    • /
    • 2009
  • TCP assumes that packet loss is always happened by congestionlike wired networks because is can not distinguish between congestion loss and transmission error loss,. This assumption results in unnecessary TCP performance degradation in wireless networks by reducing sender's congestion window size and retransmitting the lost packets. Also, repeated retransmissions loed to waste the limited battery power of mobile devices. In this paper, we propose the new congestion control scheme that add the algorithms monitoring networks states and the algorithms preventing congestion to improve TCP throughput performance and energy efficiency in wireless ad-hoc networks. Using NS2, we showd our scheme improved throughput performance and energy efficiency.

An Efficient Path Maintaining Scheme in the Grid Based Wireless Sensor Networks with a Mobile Sink Node (모바일 싱크를 갖는 무선 센서 네트워크에서 효율적인 데이터 전송경로 유지 방법)

  • Yoon, Young-Sub;Cho, Sung-Hyun;Park, Sung-Han
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.8
    • /
    • pp.53-60
    • /
    • 2010
  • This paper proposes an efficient path maintaining scheme in the grid based wireless sensor networks. The proposed scheme provides the shortest path from a source node to a mobile sink node in a re-established dissemination path. The shortest path can save energy consumption to deliver data to the destination. The proposed scheme can also reduce the cost for path maintenance by reusing the existing path. The simulation results show that the proposed scheme reduces the path maintenance cost by 60% compared to the conventional schemes.

A Localization Scheme Using Mobile Robot in Wireless Sensor Networks (무선 센서 네트워크에서 이동성 로봇을 이용한 센서 위치 인식 기법에 관한 연구)

  • Kim, Woo-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.2
    • /
    • pp.105-113
    • /
    • 2007
  • Accurate and low-cost sensor localization is a critical requirement for the deployment of wireless sensor networks in a wide variety of application. Sensor position is used for its data to be meaningful and for energy efficient data routing algorithm especially geographic routing. The previous works for sensor localization utilize global positioning system(GPS) or estimate unknown-location nodes position with help of some small reference nodes which know their position previously. However, the traditional localization techniques are not well suited in the senor network for the cost of sensors is too high. In this paper, we propose the sensor localization method with a mobile robot, which knows its position, moves through the sensing field along pre-scheduled path and gives position information to the unknown-location nodes through wireless channel to estimate their position. We suggest using the sensor position estimation method and an efficient mobility path model. To validate our method, we carried out a computer simulation, and observed that our technique achieved sensor localization more accurately and efficiently than the conventional one.

  • PDF