• Title/Summary/Keyword: Wireless channels

Search Result 693, Processing Time 0.033 seconds

Hybrid Synchronization Scheme for Multi-Carrier Communication Systems

  • Kim, Eung-Sun;Park, Sang-Kyu
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.3
    • /
    • pp.223-225
    • /
    • 2012
  • In this paper, we develop a symbol/frame time and carrier frequency synchronization scheme for multi-carrier signaling in wireless mobile channels. The proposed scheme achieves simultaneous time synchronization and carrier frequency offset estimation. Simulation results show that the frequency offset of multiple sub-carrier spacings can be estimated and that performance is improved with robustness regardless of the cyclic prefix length.

Priority Based Multi-Channel MAC Protocol for Real-Time Monitoring of Weapon Flight Test Using WSNs

  • Min, Joonki;Kim, Joo-Kyoung;Kwon, Youngmi;Lee, Yong-Jae
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.18-27
    • /
    • 2013
  • Real-time monitoring is one of the prime necessities in a weapon flight test that is required for the efficient and timely collection of large amounts of high-rate sampled data acquired by an event-trigger. The wireless sensor network is a good candidate to resolve this requirement, especially considering the inhospitable environment of a weapon flight test. In this paper, we propose a priority based multi-channel MAC protocol with CSMA/CA over a single radio for a real-time monitoring of a weapon flight test. Multi-channel transmissions of nodes can improve the network performance in wireless sensor networks. Our proposed MAC protocol has two operation modes: Normal mode and Priority Mode. In the normal mode, the node exploits the normal CSMA/CA mechanism. In the priority mode, the node has one of three grades - Class A, B, and C. The node uses a different CSMA/CA mechanism according to its grade that is determined by a signal level. High grade nodes can exploit more channels and lower backoff exponents than low ones, which allow high grade nodes to obtain more transmission opportunities. In addition, it can guarantee successful transmission of important data generated by high grade nodes. Simulation results show that the proposed MAC exhibits excellent performance in an event-triggered real-time application.

Optimal Power Allocation and Outage Analysis for Cognitive MIMO Full Duplex Relay Network Based on Orthogonal Space-Time Block Codes

  • Liu, Jia;Kang, GuiXia;Zhu, Ying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.924-944
    • /
    • 2014
  • This paper investigates the power allocation and outage performance of MIMO full-duplex relaying (MFDR), based on orthogonal space-time block codes (OSTBC), in cognitive radio systems. OSTBC transmission is used as a simple means to achieve multi-antenna diversity gain. Cognitive MFDR systems not only have the advantage of increasing spectral efficiency through spectrum sharing, but they can also extend coverage through the use of relays. In cognitive MFDR systems, the primary user experiences interference from the secondary source and relay simultaneously, owing to full duplexing. It is therefore necessary to optimize the transmission powers at the secondary source and relay. In this paper, we propose an optimal power allocation (OPA) scheme based on minimizing the outage probability in cognitive MFDR systems. We also analyse the outage probability of the secondary user in noise-limited and interference-limited environments in Nakagami-m fading channels. Simulation results show that the proposed schemes achieve performance improvements in terms of reducing outage probability.

Channel Grade Method of multi-mode mobile device for avoiding Interference at WPAN (WPAN에서 간섭을 피하기 위한 멀티모드 단말기 채널등급 방법)

  • Jung, Sungwon;Kum, Donghyun;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.91-98
    • /
    • 2015
  • There is a new evolution in technological advancement taking place called the Internet of Things (IoT), The IoT enables physical world objects in our surrounding to be connected to the Internet. ISM (Industrial Scientific Medical) band that is 2.4GHz band authorized free of charge is being widely used for smart devices. Accordingly studies have been continuously conducted on the possibility of coexistence among nodes using ISM band. In particular, the interference of IEEE 802.11b based Wi-Fi devices using overlapping channel during communication among IEEE 802.15.4 based wireless sensor nodes suitable for low-power, low-speed communication using ISM band. Because serious network performance deterioration of wireless sensor networks. In this paper, we will propose an algorithm that identifies the possibility of using more accurate channels by mixing utilization of interference signal and RSSI (Received Signal Strength Indicator) Min/Max/Activity of Interference signal by wireless sensor nodes. In addition, it will verify our algorithm by using OPNET Network verification simulator.

Iterative Channel Estimation for MIMO-OFDM System in Fast Time-Varying Channels

  • Yang, Lihua;Yang, Longxiang;Liang, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4240-4258
    • /
    • 2016
  • A practical iterative channel estimation technique is proposed for the multiple-input-multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system in the high-speed mobile environment, such as high speed railway scenario. In the iterative algorithm, the Kalman filter and data detection are jointed to estimate the time-varying channel, where the detection error is considered as part of the noise in the Kalman recursion in each iteration to reduce the effect of the detection error propagation. Moreover, the employed Kalman filter is from the canonical state space model, which does not include the parameters of the autoregressive (AR) model, so the proposed method does not need to estimate the parameters of AR model, whose accuracy affects the convergence speed. Simulation results show that the proposed method is robust to the fast time-varying channel, and it can obtain more gains compared with the available methods.

A Cluster Based Multi-channel Assignment Scheme for Adaptive Tactical Wireless Mesh Network (무선 메쉬 네트워크의 군 환경 적용을 위한 클러스터 기반 멀티채널 할당 기법)

  • Kim, Young-An
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.880-887
    • /
    • 2011
  • The Wireless Mesh Network(WMN) technology is able to provide an infrastructure for isolated islands, in which it is difficult to install cables or wide area such as battlefield. Therefore, WMN is frequently used to satisfy needs for internet connection and active studies and research on them are in progress. However, as a result of increase in number of hops under hop-by-hop communication environment has caused a significant decrease in throughput and an increase in delay. Considering the heavy traffic of real-time data, such as voice or moving pictures to adaptive WMN, in a military environment. Such phenomenon might cause an issue in fairness index. In order to resolve this issue, we proposed a Cluster Based Multi-channel Assignment Scheme(CB-MAS) for adaptive tactical wireless mesh network. In the CB-MAS, the communication between the Cluster-Head(CH) and cluster number nodes uses a channel has no effect on channels being used by the inter-CH links. Therefore, the CB-MAS can minimize the interference within multi-channel environments. Our Simulation results showed that CB-MAS achieves improved the throughput and fairness index in WMN.

An Optimal Power-Throughput Tradeoff Study for MIMO Fading Ad-Hoc Networks

  • Yousefi'zadeh, Homayoun;Jafarkhani, Hamid
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.334-345
    • /
    • 2010
  • In this paper, we study optimal tradeoffs of achievable throughput versus consumed power in wireless ad-hoc networks formed by a collection of multiple antenna nodes. Relying on adaptive modulation and/or dynamic channel coding rate allocation techniques for multiple antenna systems, we examine the maximization of throughput under power constraints as well as the minimization of transmission power under throughput constraints. In our examination, we also consider the impacts of enforcing quality of service requirements expressed in the form of channel coding block loss constraints. In order to properly model temporally correlated loss observed in fading wireless channels, we propose the use of finite-state Markov chains. Details of fading statistics of signal-to-interference-noise ratio, an important indicator of transmission quality, are presented. Further, we objectively inspect complexity versus accuracy tradeoff of solving our proposed optimization problems at a global as oppose to a local topology level. Our numerical simulations profile and compare the performance of a variety of scenarios for a number of sample network topologies.

Spectrum allocation strategy for heterogeneous wireless service based on bidding game

  • Cao, Jing;Wu, Junsheng;Yang, Wenchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1336-1356
    • /
    • 2017
  • The spectrum scarcity crisis has resulted in a shortage of resources for many emerging wireless services, and research on dynamic spectrum management has been used to solve this problem. Game theory can allocate resources to users in an economic way through market competition. In this paper, we propose a bidding game-based spectrum allocation mechanism in cognitive radio network. In our framework, primary networks provide heterogeneous wireless service and different numbers of channels, while secondary users have diverse bandwidth demands for transmission. Considering the features of traffic and QoS demands, we design a weighted interference graph-based grouping algorithm to divide users into several groups and construct the non-interference user-set in the first step. In the second step, we propose the dynamic bidding game-based spectrum allocation strategy; we analyze both buyer's and seller's revenue and determine the best allocation strategy. We also prove that our mechanism can achieve balanced pricing schema in competition. Theoretical and simulation results show that our strategy provides a feasible solution to improve spectrum utilization, can maximize overall utility and guarantee users' individual rationality.

A Study on the Performance of Multicode CDMA Scheme for Wireless LAN Modem System (무선 LAN 모뎀시스템을 위한 다중부호 CDMA 방식의 성능에 관한 연구)

  • 김관옥;박화세
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.5
    • /
    • pp.85-92
    • /
    • 2000
  • In this paepr, a multicode CDMA scheme with serial and parallel structure as the transmission scheme of wireless LAN which can transmit high speed data under an indoor channel environment is modeled and optimal values of several parameters needed for implementing wireless LAN modern system are derived through computer simulation. it is verified that given the transmission bandwidth and maximum data rate, the system performance is improved if increasing spreading gain anf the number of channels or decreasing the data rate of each channel. Especially the parallel structure makes not only the system performance much more improved but also the hardware implementation easier than serial structure under the same condition because the effective chip rate is decreased.

  • PDF

Performance Optimization of Two-Way AF Relaying in Asymmetric Fading Channels

  • Qi, Yanyan;Wang, Xiaoxiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4432-4450
    • /
    • 2014
  • It is widely observed that in practical wireless cooperative communication systems, different links may experience different fading characteristics. In this paper, we investigate into the outage probability and channel capacity of two-way amplify-and-forward (TWAF) relaying systems operating over a mixed asymmetric Rician and Rayleigh fading scenario, with different amplification policies (AP) adopted at the relay, respectively. As TWAF relay network carries concurrent traffics towards two opposite directions, both end-to-end and overall performance metrics were considered. In detail, both uniform exact expressions and simplified asymptotic expressions for the end-to-end outage probability (OP) were presented, based on which the system overall OP was studied under the condition of the two source nodes having non-identical traffic requirements. Furthermore, exact expressions for tight lower bounds as well as high SNR approximations of channel capacity of the considered scenario were presented. For both OP and channel capacity, with different APs, effective power allocation (PA) schemes under different constraints were given to optimize the system performance. Extensive simulations were carried out to verify the analytical results and to demonstrate the impact of channel asymmetry on the system performance.