• Title/Summary/Keyword: Wireless channels

Search Result 694, Processing Time 0.037 seconds

Performance of MIMO-OFDM System with Linear Pre-Equalization over Fading Channel (페이딩 환경에서 선형 사전 등화를 이용한 MIMO-OFDM 시스템의 성능)

  • Bae, Jung-Nam;Park, Woo-Chul;Kim, Jin-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1269-1274
    • /
    • 2010
  • Wireless communication channels with the most severe multipath fading phenomenon that appears each time a different delay is caused by the frequency selective fading. At this time, ISI due to the performance degradation of wireless communication channels and data transfer speed gives the constraints. OFDM technique can remove ISI inserting longer guard interval than channel delay spread of channel between symbol. However, the multi-path delay of the channel to be serious with the guard interval can not eliminate ISI. In this case, using the equalizer must compensate. Especially, use of equalizer is need absolutely as data rate becomes high speed. In this paper, we analyze the BER performance with pre-equalization for MIMO-OFDM over fading channel. The results of this paper can be applied to MIMO-OFDM system with equalization.

ROI-based Video Transmission using Cooperative Diversity over Wireless Ad-hoc Networks (무선 Ad-hoc 네트워크에서 협력 다이버시티를 이용한 관심영역 중심의 비디오 전송)

  • Jang, Uk;Lee, Sang-Hoon;Bae, Kyung-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.13 no.6
    • /
    • pp.951-961
    • /
    • 2008
  • Cooperative diversity is a cooperative technique which exploits user diversity by decoding the combined signal of the relayed signal and the direct signal in wireless multi-hop networks. Using the cooperation, the performance of the network system can be improved because cooperative diversity which is very strong against the fading channels can be achieved. In this paper, we propose the technique that provides the enhanced visual quality of the reconstructed video using the cooperative diversity with the FMO which is the error resilience tool of H.264/AVC standardization over wireless networks. The eye-tracker can detect the gaze point of user and transmit the gaze information to the nodes. After receiving the gaze information of user, each node performs ROI encoding according to the received gaze information. After encoding, video sources are divided into ROI and Non-ROI. Through the simulation results, the better visual quality of the reconstructed video is achieved when ROI and Non-ROI are transmitted through different channels.

Development of Highly Reliable Power and Communication System for Essential Instruments Under Severe Accidents in NPP

  • Choi, Bo Hwan;Jang, Gi Chan;Shin, Sung Min;Lee, Soo Ill;Kang, Hyun Gook;Rim, Chun Taek
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1206-1218
    • /
    • 2016
  • This article proposes a highly reliable power and communication system that guarantees the protection of essential instruments in a nuclear power plant under a severe accident. Both power and communication lines are established with not only conventional wired channels, but also the proposed wireless channels for emergency reserve. An inductive power transfer system is selected due to its robust power transfer characteristics under high temperature, high pressure, and highly humid environments with a large amount of scattered debris after a severe accident. A thermal insulation box and a glass-fiber reinforced plastic box are proposed to protect the essential instruments, including vulnerable electronic circuits, from extremely high temperatures of up to $627^{\circ}C$ and pressure of up to 5 bar. The proposed wireless power and communication system is experimentally verified by an inductive power transfer system prototype having a dipole coil structure and prototype Zigbee modules over a 7-m distance, where both the thermal insulation box and the glass-fiber reinforced plastic box are fabricated and tested using a high-temperature chamber. Moreover, an experiment on the effects of a high radiation environment on various electronic devices is conducted based on the radiation test having a maximum accumulated dose of 27 Mrad.

Analysis of Channel Access Delay in CR-MAC Protocol for Ad Hoc Cognitive Radio Wireless Sensor Networks without a Common Control Channel

  • Joshi, Gyanendra Prasad;Nam, Seung Yeob;Acharya, Srijana;Kim, Sung Won
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.911-923
    • /
    • 2014
  • Ad hoc cognitive radio wireless sensor networks allow secondary wireless sensor nodes to recognize spectrum opportunities and transmit data. Most existing protocols proposed for ad hoc cognitive radio wireless sensor networks require a dedicated common control channel. Allocating one channel just for control packet exchange is a waste of resources for channel-constrained networks. There are very few protocols that do not rely on a common control channel and that exchange channel-negotiation control packets during a pre-allocated time on the data channels. This, however, can require a substantial amount of time to access the channel when an incumbent is present on the channel, where the nodes are intended to negotiate for the data channel. This study examined channel access delay on cognitive radio wireless sensor networks that have no dedicated common control channel.

An Adaptive FEC Code Control Algorithm for Mobile Wireless Sensor Networks

  • Ahn Jong-Suk;Hong Seung-Wook;Heidemann John
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.489-498
    • /
    • 2005
  • For better performance over a noisy channel, mobile wireless networks transmit packets with forward error correction (FEC) code to recover corrupt bits without retransmission. The static determination of the FEC code size, however, degrades their performance since the evaluation of the underlying channel state is hardly accurate and even widely varied. Our measurements over a wireless sensor network, for example, show that the average bit error rate (BER) per second or per minute continuously changes from 0 up to $10^{-3}$. Under this environment, wireless networks waste their bandwidth since they can't deterministically select the appropriate size of FEC code matching to the fluctuating channel BER. This paper proposes an adaptive FEC technique called adaptive FEC code control (AFECCC), which dynamically tunes the amount of FEC code per packet based on the arrival of acknowl­edgement packets without any specific information such as signal to noise ratio (SNR) or BER from receivers. Our simulation experiments indicate that AFECCC performs better than any static FEC algorithm and some conventional dynamic hybrid FEC/ARQ algorithms when wireless channels are modeled with two-state Markov chain, chaotic map, and traces collected from real sensor networks. Finally, AFECCC implemented in sensor motes achieves better performance than any static FEC algorithm.

Problem Analysis of Real-time Transaction and FieldBus Communication in Industrial Networks (산업기기 네트워크에서의 실시간 처리와 필드버스 통신의 문제점 분석)

  • Moon Sang-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.921-923
    • /
    • 2006
  • With the success of wireless technologies in consumer electronics, standard wireless technologies are envisioned for the deployment in industrial environments as well. Industrial applications involving mobile subsystems or just the desire to save cabling make wireless technologies attractive. Nevertheless, these applications often have stringent requirements on reliability and timing. In wired environments, timing and reliability are well catered for by fieldbus systems. When wireless links are included, reliability and timing requirements are significantly more difficult to meet, due to the adverse properties of the radio channels. In this paper, we thus discuss some key issues coming up in wireless fieldbus and wireless industrial communication systems.

  • PDF

On Additive Signal Dependent Gaussian Noise Channel Capacity for NOMA in 5G Mobile Communication

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.37-44
    • /
    • 2020
  • The fifth generation (5G) mobile communication has been commercialized and the 5G applications, such as the artificial intelligence (AI) and the internet of things (IoT), are deployed all over the world. The 5G new radio (NR) wireless networks are characterized by 100 times more traffic, 1000 times higher system capacity, and 1 ms latency. One of the promising 5G technologies is non-orthogonal multiple access (NOMA). In order for the NOMA performance to be improved, sometimes the additive signal-dependent Gaussian noise (ASDGN) channel model is required. However, the channel capacity calculation of such channels is so difficult, that only lower and upper bounds on the capacity of ASDGN channels have been presented. Such difficulties are due to the specific constraints on the dependency. Herein, we provide the capacity of ASDGN channels, by removing the constraints except the dependency. Then we obtain the ASDGN channel capacity, not lower and upper bounds, so that the clear impact of ASDGN can be clarified, compared to additive white Gaussian noise (AWGN). It is shown that the ASDGN channel capacity is greater than the AWGN channel capacity, for the high signal-to-noise ratio (SNR). We also apply the analytical results to the NOMA scheme to verify the superiority of ASDGN channels.

An Efficient AP Channel Scanning Scheme for Real-time VoIP Streaming in Wireless LAN (WLAN 기반 실시간 VoIP Streaming을 위한 효율적 채널 스캐닝 기법)

  • Cheon, Young-Chang;Youn, Hee-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.595-598
    • /
    • 2014
  • In order to provide the Mobile Stations operating in IEEE 802.11 Wireless LAN network with seamless handover, a comprehensive study on the functions of handover considering various networking environments and characteristics of Mobile Stations is required. Note that the channel scan process finding a new AP takes the major portion of handover time, and this is the most significant issue with seamless handover for real-time multimedia service in WLAN environment. In this paper the functions required to provide seamless handover in IEEE 802.11 WLAN network are identified, and a new scanning technique is proposed with which the Mobile Stations can selectively scan the channels to reduce the channel scan time in various network environments. Here each Mobile Station awares of the channels the neighbor APs are using by scanning them in advance according to the proposed technique. Afterwards, when handover is actually required, the optimal AP is decided quickly by scanning only the predetemined group of channels and order of scan without unnecessary scan of all the channels. In addition, proposes to enter the Scan Trigger Value and Handover Threshold Value in mobile phones in order to prevent the phenomenon can not handover.

  • PDF

Effect of Body Movement and Position of Antenna on the Capacity of WBAN Channel (인체 움직임과 안테나 위치가 WBAN 채널 용량에 미치는 영향 분석)

  • Ahn, Chun-Soo;Ahn, Byoung-Jik;Kim, Sun-Woo;Choi, Jae-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.229-234
    • /
    • 2012
  • This paper presents channel measurements for wireless body area network(WBAN) and provides performance evaluation from the measurement. We measured the radio propagation in 2.45 GHz ISM band in an anechoic chamber according to various human movements and the position of transmit antennas. Two transmit antennas are mounted on different positions of human body for the purpose of comparing the diversity gain and correlation between the channels in $2{\times}1$ multiple-input single-output(MISO) systems. The experimental results show that the outage capacity is closely related with the correlation coefficient between channels in transmit diversity system.