• Title/Summary/Keyword: Wireless base station

Search Result 575, Processing Time 0.026 seconds

Enhanced Throughput and QoS Fairness for Two-Hop IEEE 802.16j Relay Networks

  • Kim, Sang-Won;Sung, Won-Jin;Jang, Ju-Wook
    • Journal of Communications and Networks
    • /
    • v.13 no.1
    • /
    • pp.32-42
    • /
    • 2011
  • Frequency reuse among relay stations (RSs) in a down-link access zone is widely adopted for throughput enhancement in IEEE 802.16j relay networks. Since the areas covered by the RSs or the base station (BS) may overlap, some mobile stations (MSs) at the border between two neighboring transmitting stations (RS or BS) using an identical frequency band may suffer severe interference or outage. This co-channel interference within the cell degrades the quality of service (QoS) fairness among the MSs as well as the system throughput. Exclusive use of a frequency band division (orthogonal resource allocation) among RSs can solve this problem but would cause degradation of the system throughput. We observe a trade-off between system throughput and QoS fairness in the previously reported schemes based on frequency reuse. In this paper, we propose a new frequency reuse scheme that achieves high system throughput with a high fairness level in QoS, positioning our scheme far above the trade-off curve formed by previous schemes. We claim that our scheme is beneficial for applications in which a high QoS level is required even for the MSs at the border. Exploiting the features of a directional antenna in the BS, we create a new zone in the frame structure. In the new zone, the RSs can serve the subordinate MSs at the border and prone to interference. In a 3-RS topology, where the RSs are located at points $120^{\circ}$ apart from one another, the throughput and Jain fairness index are 10.64 Mbps and 0.62, respectively. On the other hand, the throughput for the previously reported overlapped and orthogonal allocation schemes is 8.22 Mbps (fairness: 0.48) and 3.99 Mbps (fairness: 0.80), respectively. For a 6-RS topology, our scheme achieves a throughput of 18.38 Mbps with a fairness of 0.68; however, previous schemes with frequency reuse factors of 1, 2, 3, and 6 achieve a throughput of 15.24 Mbps (fairness: 0.53), 12.42 Mbps (fairness: 0.71),8.84 Mbps (fairness: 0.88), and 4.57 Mbps (fairness: 0.88), respectively.

Subcarrier Allocation Algorithm with Simple CSI for Multiuser OFDM System (다중 사용자 OFDM 시스템에서 간략화된 채널 정보를 이용한 부반송파 할당 알고리즘)

  • Yang, Jun-Seok;Park, Sang-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.229-235
    • /
    • 2010
  • The Orthogonal Frequency Division Multiplexing(OFDM) has been strongly recommended as a transmission technique in order to satisfy requests of high speed and high quality multimedia information. This paper considers resource allocation algorithm which supports the user Quality of Service(QoS) for multi-user OFDM system with simple CSI (Channel State Information) structure. After users eligible for services and the number of subcarrier are determined by minimum request data rate and average channel gain, subcarriers are allocated to increase total transmission rates. Although ideal CSI is not reported to base station, compared to conventional algorithm, we have obtained better result with simple CSI structure.

Data-Aware Priority-Based Energy Efficient Top-k Query Processing in Sensor Networks (센서 네트워크를 위한 데이터 인지 우선순위 기반의 에너지 효율적인 Top-k 질의 처리)

  • Yeo, Myung-Ho;Seong, Dong-Ook;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • v.36 no.3
    • /
    • pp.189-197
    • /
    • 2009
  • Top-k queries are important to many wireless sensor applications. Conventional Top-k query processing algorithms install a filter at each sensor node and suppress unnecessary sensor updates. However, they have some drawbacks that the sensor nodes consume energy extremely to probe sensor reading or update filters. Especially, it becomes worse, when the variation ratio of top-k result is higher. In this paper, we propose a novel Top-k query processing algorithm for energy-efficiency. First, each sensor determines its priority as the order of data gathering. Next, sensor nodes that have higher priority transmit their sensor readings to the base station until gathering k sensor readings. In order to show the superiority of our query processing algorithm, we simulate the performance with the existing query processing algorithms. As a result, our experimental results show that the network lifetime of our method is prolonged largely over the existing method.

Analysis of Initial Synchronization Performance in OFDMA/TDD Systems (OFDMA/TDD 시스템의 초기 동기 성능 분석)

  • Seung Young-Min;Kim Ki-Nam;Cho Sung-Joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.410-414
    • /
    • 2006
  • In the present, Orthogonal Frequency Division Multiple Access (OFDMA) that wireless access scheme for high speed data transmission is noticed in mobile communication market and OFDMA/TDD scheme will be used combining Time Division Duplex (TDD) scheme based on OFDMA. The Base Station's receiver synchronizes the symbol timing to anyone user's symbol and the other user's symbols have some Symbol Timing Offset (STO). Linear phase shift is occurred by each user's STO in an OFDMA symbol and the Multiple Access Interference (MAI) caused by the summation of each user's linear phase shift degrades the performance of ranging code detection. In this paper, we analyze the ranging code detection performance for each users STO in OFDMA/TDD system. Simulation results show that the more users access and mobile speed increase, the more ranging code detection performance degrades.

  • PDF

Integration of flash memory for effective Weather monitoring system (재해예방 모니터링 시스템의 효율적인 데이터 전송을 위한 플래시 메모리의 활용)

  • Yoo, Jae-Ho;Lee, Seung-Chul;Kwon, Tae-Ha;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.223-225
    • /
    • 2010
  • In order to minimize the casualties and damages from natural disasters, local terrain and weather phenomena need to be constantly monitored. Various weather monitoring systems are designed to collect and monitor the weather information for disaster prevention. Nowadays, wireless sensor networks have been widely used to transmit the weather information and collected by the base station at a regular interval. In this paper, disaster prevention monitoring system for efficient data transfer of weather information such as temperature, humidity and illumination are designed. Weather information is able to burst the data transmission based on storage of flash memory. Telosb sensor node are used in the research; programmed by nesC language used by TinyOS.

  • PDF

Minimizing Energy Consumption of Sensor Networks with Energy Balance Ratio and Relay Node Placement (에너지 균형비와 중계노드 위치를 함께 고려한 센서 네트워크의 에너지 소비 최소화)

  • Sohn, Surg-Won;Han, Kwang-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1549-1555
    • /
    • 2009
  • The Relay node placement problem is one of the most important requirements for many wireless sensor networks because the lifetime of sensor networks is closely related with the placement of relay nodes which receive sensed data from sensor nodes and forward them to the base station. Relay node placement problem has focused at minimization of dissipated total energy of the sensor nodes in whole networks. However, minimum total energy causes the unbalance of consumed energy in sensor nodes due to different distances between relay nodes and sensor nodes. This paper proposes the concept of energy balance ratio and finds the locations of relay nodes using objective functions which maximize the energy balance ratio. Maximizing this ratio results in maximizing the network lifetime by minimizing the energy consumption of large-scale sensor networks. However, finding a solution to relay node placement problem is NP-hard and it is very difficult to get exact solutions. Therefore, we get approximate solutions to EBR-RNP problem which considers both energy balance ratio and relay node placement using constraint programming.

Performance Analysis of a Dense Device to Device Network

  • Kim, Seung-Yeon;Lim, Chi-Hun;Cho, Choong-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.2967-2981
    • /
    • 2014
  • Device-to-Device (D2D) communication is a technology component for long-term evolution-advanced (LTE-A). In D2D communication, users in close proximity to each other can communicate directly without going through a base station; such direct communication can improve spectral efficiency. Although D2D communication brings improvement in spectral efficiency, it also causes interference to the cellular network as a result of spectrum sharing. In particularly, D2D communication can generate interference for each D2D pair when the common wireless medium in a co-located limited area is accessed. Even though the interference management for between the D2D pair and cellular networks has been proposed, the interference reducing methods have still not been fully studied for the D2D pairs. In this paper, we investigate the problem of D2D pair coexistence in which interference is considered between D2D pairs. Using a signal to interference model for a target D2D pair, we provide an analysis of the aggregated throughput of a dense D2D network. For a target D2D pair, we assume that the desired signal and interference signals obey multipath fading and shadow fading. Through analysis, we demonstrate the effect of cluster size such as the number of D2D pairs and the size of the considered area on the network performance. The analytical results are compared with computer simulations. Our work can be used for a rough guideline for controlling the system throughput in a dense D2D network environment.

ESBL: An Energy-Efficient Scheme by Balancing Load in Group Based WSNs

  • Mehmood, Amjad;Nouman, Muhammad;Umar, Muhammad Muneer;Song, Houbing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4883-4901
    • /
    • 2016
  • Energy efficiency in Wireless Sensor Networks (WSNs) is very appealing research area due to serious constrains on resources like storage, processing, and communication power of the sensor nodes. Due to limited capabilities of sensing nodes, such networks are composed of a large number of nodes. The higher number of nodes increases the overall performance in data collection from environment and transmission of packets among nodes. In such networks the nodes sense data and ultimately forward the information to a Base Station (BS). The main issues in WSNs revolve around energy consumption and delay in relaying of data. A lot of research work has been published in this area of achieving energy efficiency in the network. Various techniques have been proposed to divide such networks; like grid division of network, group based division, clustering, making logical layers of network, variable size clusters or groups and so on. In this paper a new technique of group based WSNs is proposed by using some features from recent published protocols i.e. "Energy-Efficient Multi-level and Distance Aware Clustering (EEMDC)" and "Energy-Efficient Multi-level and Distance Aware Clustering (EEUC)". The proposed work is not only energy-efficient but also minimizes the delay in relaying of data from the sensor nodes to BS. Simulation results show, that it outperforms LEACH protocol by 38%, EEMDC by 10% and EEUC by 13%.

An Energy Efficient Continuous Skyline Query Processing Method in Wireless Sensor Networks (무선 센서 네트워크 환경에서 에너지 효율적인 연속 스카이라인 질의 처리기법)

  • Seong, Dong-Ook;Yeo, Myung-Ho;Yoo, Jae-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.4
    • /
    • pp.289-293
    • /
    • 2009
  • In sensor networks, many methods have been proposed to process in-network aggregation effectively. Contrary to normal aggregation queries, skyline query processing that compare multi-dimension data for producing result is very hard. It is important to filter unnecessary data for energy-efficient skyline query processing. Existing approach like MFTAC restricts unnecessary data transitions by deploying filters to whole sensors. However, network lifetime is reduced by energy consumption for filters transmission. In this paper, we propose a lazy filtering-based skyline query processing algorithm of in-network for reducing energy consumption by filters transmission. The proposed algorithm creates the skyline filter table (SFT) in the data gathering process which sends from sensor nodes to the base station and filters out unnecessary transmissions using it. The experimental results show that the proposed algorithm reduces false positive by 53% and improves network lifetime by 44% on average over MFTAC.

The Call Control Scheme for Multiple Cells CDMA System Under Non-Uniform Traffic Distribution (비균일 부하를 가진 다중 셀 CDMA시스템에서의 호 제어 기법)

  • 이동명
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.5
    • /
    • pp.737-743
    • /
    • 2004
  • In this paper, we propose the call control scheme that can improve the capacity of the wireless system for the non-uniform traffic load distribution and the multiple types of services in multiple cells CDMA system. The number of mobile stations that can be served simultaneously in a base station is limited by the amount of total interference received in CDMA system. Further, the average number of mobile stations in each cell may not be uniformly distributed. Considering this factors, the call admission control scheme using the effective bandwidth concept is adapted in this paper. Thus, the bandwidth for a new call can be varied dynamically for reducing the blocking rate of new calls and the dropping rate of handoff calls. The suggested call control scheme is experimented through a simulation by dynamically assigning the bandwidth to new and handoff calls. The simulation results show that the proposed call control scheme can accommodate more mobile stations than the other methods in multiple cells environment.

  • PDF