• Title/Summary/Keyword: Wireless Sensor networks

Search Result 2,280, Processing Time 0.026 seconds

A Forwarding Scheme for (m,k)-firm Streams Based on Local Decision in Wireless Sensor Networks

  • Li, Bijun;Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.775-779
    • /
    • 2011
  • As the technology of multimedia sensor networks is desired in large numbers of applications nowadays, real-time service becomes one of the most important research challenges. Even though lots of related works have been conducted to meet this requirement in several ways, the specific traffic model for real-time has not been taken yet. Thus, it causes lack of adaptability of those approaches in real deployment. To solve this problem, in this paper, we model the application via (m,k)-firm streams which have weakly hard real-time property. And then, a novel forwarding scheme based on modified DBP (Distance-Based Priority) is proposed by considering local-DBP and stream DBP together. Local-DBP can contribute to identify the detailed causes of unsatisfied quality, that is, network congestion or wireless link failure. Simulation results reveal that (m,k)-firm is a good traffic model for multimedia sensor networks and the proposed scheme can contribute to guarantee real-time requirement well.

An Adaptive Energy-Efficient and Low-Latency MAC Protocol for Wireless Sensor Networks

  • Liu, Hao;Yao, Guoliang;Wu, Jianhui;Shi, Longxing
    • Journal of Communications and Networks
    • /
    • v.12 no.5
    • /
    • pp.510-517
    • /
    • 2010
  • In this paper, an adaptive MAC protocol (variable load adaptive (VLA)-MAC) is proposed for wireless sensor networks. This protocol can achieve high energy efficiency and provide low latency under variable-traffic-load conditions. In the case of VLA-MAC, traffic load is measured online and used for adaptive adjustment. Sensor nodes transmit packets in bursts under high load conditions to alleviate packet accumulation and reduce latency. This also removes unnecessary listen action and decreases energy consumption in low load conditions. Simulation results show that the energy efficiency, latency, and throughput achieved by VLA-MAC are higher than those achieved by some traditional approaches.

A Range-Based Localization Algorithm for Wireless Sensor Networks

  • Zhang Yuan;Wu Wenwu;Chen Yuehui
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.429-437
    • /
    • 2005
  • Sensor localization has become an essential requirement for realistic applications over wireless sensor networks (WSN). In this paper we propose an ad hoc localization algorithm that is infrastructure-free, anchor-free, and computationally efficient with reduced communication. A novel combination of distance and direction estimation technique is introduced to detect and estimate ranges between neighbors. Using this information we construct unidirectional coordinate systems to avoid the reflection ambiguity. We then compute node positions using a transformation matrix [T], which reduces the computational complexity of the localization algorithm while computing positions relative to the fixed coordinate system. Simulation results have shown that at a node degree of 9 we get $90\%$ localization with $20\%$ average localization error without using any error refining schemes.

Reference State Tracking in Distributed Leader-Following Wireless Sensor Networks with Limited Errors

  • Mou, Jinping;Wang, Jie
    • Journal of Communications and Networks
    • /
    • v.17 no.6
    • /
    • pp.602-608
    • /
    • 2015
  • In this paper, the limited error tracking problem is investigated for distributed leader-following wireless sensor networks (LFWSNs), where all sensors share data by the local communications, follower sensors are influenced by leader sensors directly or indirectly, but not vice versa, all sensor nodes track a reference state that is determined by the states of all leader sensors, and tracking errors are limited. In a LFWSN, the communicating graph is mainly expressed by some complete subgraphs; if we fix subgraphs that are composed of all leaders while all nodes in complete subgraphs of followers run on the sleeping-awaking method, then the fixed leaders and varying followers topology is obtained, and the switching topology is expressed by a Markov chain. It is supposed that the measurements of all sensors are corrupted by additive noises. Accordingly, the limited error tracking protocol is proposed. Based on the theory of asymptotic boundedness in mean square, it is shown that LFWSN keeps the limited error tracking under the designed protocol.

Self-healing Method for Data Aggregation Tree in Wireless Sensor Networks (무선센서네트워크에서 데이터 병합 트리를 위한 자기치유 방법)

  • Le, Duc Tai;Duc, Thang Le;Yeom, Sanggil;Zalyubovskiy, Vyacheslav V.;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.212-213
    • /
    • 2015
  • Data aggregation is a fundamental problem in wireless sensor networks that has attracted great attention in recent years. On constructing a robust algorithm for minimizing data aggregation delay in wireless sensor networks, we consider limited transmission range sensors and approximate the minimum-delay data aggregation tree which can only be built in networks of unlimited transmission range sensors. The paper proposes an adaptive method that can be applied to maintain the network structure in case of a sensor node fails. The data aggregation tree built by the proposed scheme is therefore self-healing and robust. Intensive simulations are carried out and the results show that the scheme could adapt well to network topology changes compared with other approaches.

Understanding of Technologies and Research Trends of Wireless Body Area Networks (Wireless Body Area Networks의 관련기술과 연구경향에 대한 이해)

  • Ha, Il-Kyu;Ahn, Byoung-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1961-1972
    • /
    • 2014
  • Recently, with the increasing of the interest in the integration of medical technology and information communication technology, researches on WBAN (Wireless Body Area Networks) that try to apply sensor network to the human body have been processed actively. The existing sensor network technology has the potential to be used in WBAN, but it has some limitations also. In particular, because the sensors are likely to communicate through each part of the body, it has a very different network environment from the sensor network that uses a free space. Therefore, researches on WBAN have a variety area of study that slightly different from the conventional sensor networks and take into account the characteristics of the body. In this study, we investigate the environmental characteristics of WBAN that are separated from the conventional sensor network, and the research trends of WBAN systematically by using the technique of SLR (Systematic Literature Review) from 2001 around when the concept of WBAN has been introduced. The investigation includes the classification of research and the researcher's features. And the survey results and the outlook for further study are summarized.

Adaptive Duty Cycling MAC Protocols Using Closed-Loop Control for Wireless Sensor Networks

  • Kim, Jae-Hyun;Kim, Seog-Gyu;Lee, Jai-Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.105-122
    • /
    • 2011
  • The fundamental design goal of wireless sensor MAC protocols is to minimize unnecessary power consumption of the sensor nodes, because of its stringent resource constraints and ultra-power limitation. In existing MAC protocols in wireless sensor networks (WSNs), duty cycling, in which each node periodically cycles between the active and sleep states, has been introduced to reduce unnecessary energy consumption. Existing MAC schemes, however, use a fixed duty cycling regardless of multi-hop communication and traffic fluctuations. On the other hand, there is a tradeoff between energy efficiency and delay caused by duty cycling mechanism in multi-hop communication and existing MAC approaches only tend to improve energy efficiency with sacrificing data delivery delay. In this paper, we propose two different MAC schemes (ADS-MAC and ELA-MAC) using closed-loop control in order to achieve both energy savings and minimal delay in wireless sensor networks. The two proposed MAC schemes, which are synchronous and asynchronous approaches, respectively, utilize an adaptive timer and a successive preload frame with closed-loop control for adaptive duty cycling. As a result, the analysis and the simulation results show that our schemes outperform existing schemes in terms of energy efficiency and delivery delay.

Efficient Measurement Method for Spatiotemporal Compressive Data Gathering in Wireless Sensor Networks

  • Xue, Xiao;Xiao, Song;Quan, Lei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1618-1637
    • /
    • 2018
  • By means of compressive sensing (CS) technique, this paper considers the collection of sensor data with spatiotemporal correlations in wireless sensor networks (WSNs). In energy-constrained WSNs, one-dimensional CS methods need a lot of data transmissions since they are less applicable in fully exploiting the spatiotemporal correlations, while the Kronecker CS (KCS) methods suffer performance degradations when the signal dimension increases. In this paper, an appropriate sensing matrix as well as an efficient sensing method is proposed to further reduce the data transmissions without the loss of the recovery performance. Different matrices for the temporal signal of each sensor node are separately designed. The corresponding energy-efficient data gathering method is presented, which only transmitting a subset of sensor readings to recover data of the entire WSN. Theoretical analysis indicates that the sensing structure could have the relatively small mutual coherence according to the selection of matrix. Compared with the existing spatiotemporal CS (CS-ST) method, the simulation results show that the proposed efficient measurement method could reduce data transmissions by about 25% with the similar recovery performance. In addition, compared with the conventional KCS method, for 95% successful recovery, the proposed sensing structure could improve the recovery performance by about 20%.

A Method to Support Mobile Sink Node in a Hierarchical Routing Protocol of Wireless Sensor Networks (무선 센서 네트워크를 위한 계층적 라우팅 프로토콜에서의 이동 싱크 노드 지원 방안)

  • Kim, Dae-Young;Cho, Jin-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1B
    • /
    • pp.48-57
    • /
    • 2008
  • Wireless sensor networks are composed of a lot of sensor nodes and they are used to monitor environments. Since many studies on wireless sensor networks have considered a stationary sink node, they cannot provide fully ubiquitous applications based on a mobile sink node. In those applications, routing paths for a mobile sink node should be updated while a sink node moves in order to deliver sensor data without data loss. In this paper, we propose a method to continuously update routing paths for a mobile sink node which can be extended on hierarchical multi-hop routing protocols in wireless sensor networks. The efficiency of the proposed scheme has been validated through comparing existing method using a location based routing protocol by extensive computer simulation.

Positioning Scheme using Acceleration Factor for Wireless Sensor Networks

  • Park, Na-Yeon;Son, Cheol-Su;Lee, Sung-Jae;Hwang, In-Moon;Kim, Won-Jung
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.4
    • /
    • pp.459-465
    • /
    • 2008
  • Locations of nodes as well as gathered data from nodes are very important because generally multiple nodes are deployed randomly and data are gathered in wireless sensor network. Since the nodes composing wireless sensor network are low cost and low performance devices, it is very difficult to add specially designed devices for positioning into the nodes. Therefore in wireless sensor network, technology positioning nodes precisely using low cost is very important and valuable. This research proposes Cooperative Positioning System, which raises accuracy of location positioning and also can find positions on multiple sensors within limited times.