• Title/Summary/Keyword: Wireless Security

Search Result 1,483, Processing Time 0.022 seconds

Traceable Dynamic Public Auditing with Identity Privacy Preserving for Cloud Storage

  • Zhang, Yinghui;Zhang, Tiantian;Guo, Rui;Xu, Shengmin;Zheng, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5653-5672
    • /
    • 2019
  • In cloud computing era, an increasing number of resource-constrained users outsource their data to cloud servers. Due to the untrustworthiness of cloud servers, it is important to ensure the integrity of outsourced data. However, most of existing solutions still have challenging issues needing to be addressed, such as the identity privacy protection of users, the traceability of users, the supporting of dynamic user operations, and the publicity of auditing. In order to tackle these issues simultaneously, in this paper, we propose a traceable dynamic public auditing scheme with identity privacy preserving for cloud storage. In the proposed scheme, a single user, including a group manager, is unable to know the signer's identity. Furthermore, our scheme realizes traceability based on a secret sharing mechanism and supports dynamic user operations. Based on the security and efficiency analysis, it is shown that our scheme is secure and efficient.

Development of Security Service for Mobile Internet Banking Using Personal Digital Assistants

  • Choo, Young-Yeol;Kim, Jung-In
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.12
    • /
    • pp.1719-1728
    • /
    • 2004
  • The fusion of Internet technology and applications with wireless communication provides a new business model and promises to extend the possibilities of commerce to what is popularly called mobile commerce, or m-commerce. In mobile Internet banking service through wireless local area network, security is a most important factor to consider. We describe the development of security service for mobile Internet banking on Personal Digital Assistants (PDAs). Banking Server and Authentication Server were developed to simulate banking business and to support certificate management of authorized clients, respectively. To increase security, we took hybrid approach in implementation: symmetric block encryption and public-key encryption. Hash function and random number generation were exploited to generate a secret key. The data regarding banking service were encrypted with symmetric block encryption, RC4, and the random number sequence was done with public-key encryption. PDAs communicate through IEEE 802.IIb wireless LAN (Local Area Network) to access banking service. Several banking services and graphic user interfaces, which emulatedthe services of real bank, were developed to verity the working of each security service in PDA, the Banking Server, and the Authentication Server.

  • PDF

A Study on the Security Mechanism to Reduce Authentication Time in Wireless LAN(IEEE 802.11) (Wireless LAN(IEEE 802.11)에서 인증시간 단축을 위한 보안 메커니즘에 관한 연구)

  • Hong, Kyung-Sik;Seo, Jong-Soo;Ko, Kwang-Yong;Jung, Jun-Ha;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.112-120
    • /
    • 2009
  • Both security enhancement in wireless and fast access for mobility are required to employ wireless LAN in ITS (Intelligent Transportation Systems). However, for the case of employing IEEE 802.11i security standard, it is known that the user authentication procedure of IEEE 802.1x and 4-way handshake procedure for stronger security enforcement may not be suitable for ITS due to its large delay. In this paper, we propose fast authentication method to resolve the above authentication delay problem, and verify its performance via simulation analysis.

  • PDF

A Design of Transceiver Module for Wire and Wireless Robust Security System (로버스트 유무선 보안시스템을 위한 송수신 모듈의 설계)

  • Park, Sung Geoul;Lee, Jae Min
    • Journal of Digital Contents Society
    • /
    • v.17 no.3
    • /
    • pp.173-180
    • /
    • 2016
  • In this paper, a design of transceiver module for real-time wire and wireless robust integrated security system to solve the problem of conventional security system and its transceiver module is proposed. The presented robust integrated security system is designed with RF control unit and wireless transceiver module. A RF controller in transceiver module works as a low-power RF transceiver system. It is designed to use specific bandwidth stored in registers and manipulate RF power of transceiver by accessing the random values of registers. Operation algorithm for RF transceiver module is also presented. The designed transceiver module and the operation algorithm are implemented and verified by experiments.

Trust based Secure Reliable Route Discovery in Wireless Mesh Networks

  • Navmani, TM;Yogesh, P
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3386-3411
    • /
    • 2019
  • Secured and reliable routing is a crucial factor for improving the performance of Wireless Mesh Networks (WMN) since these networks are susceptible to many types of attacks. The existing assumption about the internal nodes in wireless mesh networks is that they cooperate well during the forwarding of packets all the time. However, it is not always true due to the presence of malicious and mistrustful nodes. Hence, it is essential to establish a secure, reliable and stable route between a source node and a destination node in WMN. In this paper, a trust based secure routing algorithm is proposed for enhancing security and reliability of WMN, which contains cross layer and subject logic based reliable reputation scheme with security tag model for providing effective secured routing. This model uses only the trusted nodes with the forwarding reliability of data transmission and it isolates the malicious nodes from the providing path. Moreover, every node in this model is assigned with a security tag that is used for efficient authentication. Thus, by combining authentication, trust and subject logic, the proposed approach is capable of choosing the trusted nodes effectively to participate in forwarding the packets of trustful peer nodes successfully. The simulation results obtained from this work show that the proposed routing protocol provides optimal network performance in terms of security and packet delivery ratio.

Security Improvement of User Authentication Protocol for Heterogeneous Wireless Sensor Networks for the Internet of Things Environment (Heterogeneous Wireless Sensor Networks 환경에서의 안전한 사용자 인증 프로토콜)

  • Lee, Young sook
    • Convergence Security Journal
    • /
    • v.21 no.1
    • /
    • pp.55-62
    • /
    • 2021
  • Recently, the use of sensor devices is gradually increasing. As various sensor device emerge and the related technologies advance, there has been a dramatic increase in the interest in heterogeneous wireless sensor networks (WSNs). While sensor device provide us many valuable benefits, automatically and remotely supported services offered and accessed remotely through WSNs also exposes us to many different types of security threats. Most security threats were just related to information leakage and the loss of authentication among the involved parties: users, sensors and gateways. An user authentication protocol for wireless sensor networks is designed to restrict access to the sensor data only to user. In 2019, Chen et al. proposed an efficient user authentication protocol. However, Ryu et al. show that it's scheme still unstable and inefficient. It cannot resist offline password guessing attack and session key attack. In this paper, we propose an improved protocol to overcome these security weaknesses by storing secret data in device. In addition, security properties like session-key security, perfect forward secrecy, known-key security and resistance against offline password attacks are implied by our protocol.

Study on Structural and Systematic Security Threats of Vehicle Black Box as Embedded System

  • Park, Jaehyun;Choi, WoongChul
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.9-16
    • /
    • 2017
  • Recently, more users have been using IoT embedded systems. Since the wireless network function is a basic and core function in most embedded systems, new security threats and weaknesses are expected to occur. In order to resolve these threats, it is necessary to investigate the security issues in the development stages according to the Security Development Lifecycle (SDL). This study analyzes the vulnerabilities of the embedded systems equipped with the wireless network function, and derives possible security threats and how dangerous such threats are. We present security risks including bypassing the authentication stage required for accessing to the embedded system.

Improvement of WEP Key transmission between APs, during STA Movement in Wireless Environment (무선 LAN 환경에서 단말 이동시 전송되는 AP간 WEP 키 전송 개선 방안)

  • Song, Il-Gyu;Hong, Choong-Seon;Lee, Dae-Young
    • The KIPS Transactions:PartC
    • /
    • v.11C no.2
    • /
    • pp.219-228
    • /
    • 2004
  • Wireless LAN(wireless Local Area Network) is constructed network environment by radio in indoors or outdoors environment and that to use electric wave or light instead of wire to client such as PC(Personal Computer), notebook, PDA in hub(Hub) in technological side. Now, among IEEE 802.11 WG(Working Group), there is TGf(Task Group F) that develop standard protocol between AP's(Access Point). In this group, proposed IAPP(Inter Access Point Protocol) to secure interoperability between AP producing in different manufacturer, this offers seamless connectivity between STA by sharing Security Context information or Layer 2 forwarding information between AP without passing through re-authentication process when STAs(Station) move by protocol to secure mobility between AP that differ in equal serve network. In this paper, I wish to suggest method that change avenue of communication of message to block information leakage that can occur at security message or WEP Key transmission between above AP, and uses public key to offer wireless area security little more.

Security Model for Tree-based Routing in Wireless Sensor Networks: Structure and Evaluation

  • Almomani, Iman;Saadeh, Maha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1223-1247
    • /
    • 2012
  • The need for securing Wireless Sensor Networks (WSNs) is essential especially in mission critical fields such as military and medical applications. Security techniques that are used to secure any network depend on the security requirements that should be achieved to protect the network from different types of attacks. Furthermore, the characteristics of wireless networks should be taken into consideration when applying security techniques to these networks. In this paper, energy efficient Security Model for Tree-based Routing protocols (SMTR) is proposed. In SMTR, different attacks that could face any tree-based routing protocol in WSNs are studied to design a security reference model that achieves authentication and data integrity using either Message Authentication Code (MAC) or Digital Signature (DS) techniques. The SMTR communication and processing costs are mathematically analyzed. Moreover, SMTR evaluation is performed by firstly, evaluating several MAC and DS techniques by applying them to tree-based routing protocol and assess their efficiency in terms of their power requirements. Secondly, the results of this assessment are utilized to evaluate SMTR phases in terms of energy saving, packet delivery success ratio and network life time.

Towards Choosing Authentication and Encryption: Communication Security in Sensor Networks

  • Youn, Seongwook;Cho, Hyun-chong
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1307-1313
    • /
    • 2017
  • Sensor networks are composed of provide low powered, inexpensive distributed devices which can be deployed over enormous physical spaces. Coordination between sensor devices is required to achieve a common communication. In low cost, low power and short-range wireless environment, sensor networks cope with significant resource constraints. Security is one of main issues in wireless sensor networks because of potential adversaries. Several security protocols and models have been implemented for communication on computing devices but deployment these models and protocols into the sensor networks is not easy because of the resource constraints mentioned. Memory intensive encryption algorithms as well as high volume of packet transmission cannot be applied to sensor devices due to its low computational speed and memory. Deployment of sensor networks without security mechanism makes sensor nodes vulnerable to potential attacks. Therefore, attackers compromise the network to accept malicious sensor nodes as legitimate nodes. This paper provides the different security models as a metric, which can then be used to make pertinent security decisions for securing wireless sensor network communication.