• Title/Summary/Keyword: Wireless Security

Search Result 1,487, Processing Time 0.023 seconds

A Study on Scalable Federated ID Interoperability Method in Mobile Network Environments (모바일 환경으로 확장 가능한 federated ID 연동 방안에 관한 연구)

  • Kim, Bae-Hyun;Ryoo, In-Tae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.6
    • /
    • pp.27-35
    • /
    • 2005
  • While the current world wide network offers an incredibly rich base of information, it causes network management problem because users should have many independent IDs and passwords for accessing different sewers located in many places. In order to solve this problem users have employed single circle of trust(COT) ID management system, but it is still not sufficient for clearing the problem because the coming ubiquitous network computing environment will be integrated and complex networks combined with wired and wireless network devices. The purpose of this paper is to describe the employment and evaluation of federated ID interoperability method for solving the problem. The use of the proposed model can be a solution for solving network management problem in the age of mobile computing environment as well as wired network computing environment.

A Service Protection Scheme based on non-CAS for Mobile IPTV Service (Mobile IPTV 서비스 환경을 위한 non-CAS 기반의 서비스 보호 기법)

  • Roh, Hyo-Sun;Jung, Sou-Hwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.2
    • /
    • pp.27-35
    • /
    • 2011
  • Due to the advancement of IPTV technologies, Mobile IPTV service is needed to be supported for service and content protection. CAS is generally used in the IPTV service to protect service and content. However, the CAS is not efficient in the Mobile IPTV. The CAS needs too much bandwidth for Service Key update to the each subscriber. Moreover, the CAS is increasing computation burden for the service key refreshment in the key management server when the subscriber frequently changes of the IPTV service group. To solve the problems, we used hierarchical key structure based on pre-shared key that is securely stored into smart card or USIM and do not use the EMM for Service Key update. As a result, the proposed scheme decreases computation burden at the key management server and wireless bandwidth burden in the Mobile IPTV service.

Adaptation of the parameters of the physical layer of data transmission in self-organizing networks based on unmanned aerial vehicles

  • Surzhik, Dmitry I.;Kuzichkin, Oleg R.;Vasilyev, Gleb S.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.23-28
    • /
    • 2021
  • The article discusses the features of adaptation of the parameters of the physical layer of data transmission in self-organizing networks based on unmanned aerial vehicles operating in the conditions of "smart cities". The concept of cities of this type is defined, the historical path of formation, the current state and prospects for further development in the aspect of transition to "smart cities" of the third generation are shown. Cities of this type are aimed at providing more comfortable and safe living conditions for citizens and autonomous automated work of all components of the urban economy. The perspective of the development of urban mobile automated technical means of infocommunications is shown, one of the leading directions of which is the creation and active use of wireless self-organizing networks based on unmanned aerial vehicles. The advantages of using small-sized unmanned aerial vehicles for organizing networks of this type are considered, as well as the range of tasks to be solved in the conditions of modern "smart cities". It is shown that for the transition to self-organizing networks in the conditions of "smart cities" of the third generation, it is necessary to ensure the adaptation of various levels of OSI network models to dynamically changing operating conditions, which is especially important for the physical layer. To maintain an acceptable level of the value of the bit error probability when transmitting command and telemetry data, it is proposed to adaptively change the coding rate depending on the signal-to-noise ratio at the receiver input (or on the number of channel decoder errors), and when transmitting payload data, it is also proposed to adaptively change the coding rate together with the choice of modulation methods that differ in energy and spectral efficiency. As options for the practical implementation of these solutions, it is proposed to use an approach based on the principles of neuro-fuzzy control, for which examples of determining the boundaries of theoretically achievable efficiency are given.

A Broadband High Gain Planar Vivaldi Antenna for Medical Internet of Things (M-IoT) Healthcare Applications

  • Permanand, Soothar;Hao, Wang;Zaheer Ahmed, Dayo;Falak, Naz;Badar, Muneer;Muhammad, Aamir
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.245-251
    • /
    • 2022
  • In this paper, a high gain, broadband planar vivaldi antenna (PVA) by utilizing a broadband stripline feed is developed for wireless communication for IoT systems. The suggested antenna is designed by attaching a tapered-slot construction to a typical vivaldi antenna, which improves the antenna's radiation properties. The PVA is constructed on a low-cost FR4 substrate. The dimensions of the patch are 1.886λ0×1.42λ0×0.026λ0, dielectric constant Ɛr=4.4, and loss tangent δ=0.02. The width of the feed line is reduced to improve the impedance bandwidth of the antenna. The computed reflection coefficient findings show that the suggested antenna has a 46.2% wider relative bandwidth calculated at a 10 dB return loss. At the resonance frequencies of 6.5 GHz, the studied results show an optimal gain of 5.82 dBi and 85% optimal radiation efficiency at the operable band. The optometric analysis of the proposed structure shows that the proposed antenna can achieve wide enough bandwidth at the desired frequency and hence make the designed antenna appropriate to work in satellite communication and medical internet of things (M-IoT) healthcare applications.

A Key Redistribution Method for Enhancing Energy Efficiency in Dynamic Filtering based Sensor Networks (동적 여과 기법 기반 센서 네트워크의 에너지 효율을 높이기 위한 키 재분배 결정 방법)

  • Sun, Chung-Il;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.125-131
    • /
    • 2010
  • In wireless sensor networks application, sensor nodes are randomly deployed in wide and opened environment typically. Since sensor networks have these features, it is vulnerable to physical attacks in which an adversary can capture deployed nodes and use them to inject a fabricated report into the network. This threats of network security deplete the limited energy resource of the entire network using injected fabricated reports. A dynamic en-route filtering scheme is proposed to detect and drop the injected fabricated report. In this scheme, node executes the key redistribution to increases the detection power. It is very important to decide the authentication key redistribution because a frequent key redistribution can cause the much energy consumption of nodes. In this paper, we propose a key redistribution determining method to enhance the energy efficiency and maintain the detection power of network. Each node decides the authentication key redistribution using a fuzzy system in a definite period. The proposed method can provide early detection of fabricated reports, which results in energy-efficiency against the massive fabricated report injection attacks.

An Encryption Algorithm Based on Light-Weight SEED for Accessing Multiple Objects in RFID System (RFID 시스템에서 다중 객체를 지원하기 위한 경량화된 SEED 기반의 암호화 알고리즘)

  • Kim, Ji-Yeon;Jung, Jong-Jin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.3
    • /
    • pp.41-49
    • /
    • 2010
  • Recently, RFID systems are spreading in various industrial areas faster but cause some serious problems of information security because of its unstable wireless communication. Moreover, traditional RFID systems have a restriction that one tag per each application object. This restriction deteriorates their usability because it is difficult to distinguish many tags without some kind of effort. Therefore, efficient information sharing of objects based on information security has to be studied for more spreading of RFID technologies. In this paper, we design a new RFID tag structure for supporting multiple objects which can be shared by many different RFID applications. We also design an encryption/decryption algorithm to protect the identifying information of objects stored in our tag structure. This algorithm is a light revision of the existing SEED algorithm which can be operated in RFID tag environment. To evaluate the performance of our algorithm, we measure the encryption and decryption times of this algorithm and compare the results with those of the original SEED algorithm.

Performance Comparison of Autoencoder based OFDM Communication System with Wi-Fi

  • Shiho Oshiro;Takao Toma;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.172-178
    • /
    • 2023
  • In this paper, performance of autoencoder based OFDM communication systems is compared with IEEE 802.11a Wireless Lan System (Wi-Fi). The proposed autoencoder based OFDM system is composed of the following steps. First, one sub-carrier's transmitter - channel - receiver system is created by autoencoder. Then learning process of the one sub-carrier autoencoder generates constellation map. Secondly, using the plural sub-carrier autoencoder systems, parallel bundle is configured with inserting IFFT and FFT before and after the channel to configure OFDM system. Finally, the receiver part of the OFDM communication system was updated by re-learning process for adapting channel condition such as multipath channel. For performance comparison, IEEE802.11a and the proposed autoencoder based OFDM system are compared. For channel estimation, Wi-Fi uses initial long preamble to measure channel condition. but Autoencoder needs re-learning process to create an equalizer which compensate a distortion caused by the transmission channel. Therefore, this autoencoder based system has basic advantage to the Wi-Fi system. For the comparison of the system, additive random noise and 2-wave and 4-wave multipaths are assumed in the transmission path with no inter-symbol interference. A simulation was performed to compare the conventional type and the autoencoder. As a result of the simulation, the autoencoder properly generated automatic constellations with QPSK, 16QAM, and 64QAM. In the previous simulation, the received data was relearned, thus the performance was poor, but the performance improved by making the initial value of reception a random number. A function equivalent to an equalizer for multipath channels has been realized in OFDM systems. As a future task, there is not include error correction at this time, we plan to make further improvements by incorporating error correction in the future.

Assessing Efficiency of Handoff Techniques for Acquiring Maximum Throughput into WLAN

  • Mohsin Shaikha;Irfan Tunio;Baqir Zardari;Abdul Aziz;Ahmed Ali;Muhammad Abrar Khan
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.172-178
    • /
    • 2023
  • When the mobile device moves from the coverage of one access point to the radio coverage of another access point it needs to maintain its connection with the current access point before it successfully discovers the new access point, this process is known as handoff. During handoff the acceptable delay a voice over IP application can bear is of 50ms whereas the delay on medium access control layer is high enough that goes up to 350-500ms. This research provides a suitable methodology on medium access control layer of the IEEE 802.11 network. The medium access control layer comprises of three phases, namely discovery, reauthentication and re-association. The discovery phase on medium access control layer takes up to 90% of the total handoff latency. The objective is to effectively reduce the delay for discovery phase to ensure a seamless handoff. The research proposes a scheme that reduces the handoff latency effectively by scanning channels prior to the actual handoff process starts and scans only the neighboring access points. Further, the proposed scheme enables the mobile device to scan first the channel on which it is currently operating so that the mobile device has to perform minimum number of channel switches. The results show that the mobile device finds out the new potential access point prior to the handoff execution hence the delay during discovery of a new access point is minimized effectively.

Performance Evaluation of SDN Controllers: RYU and POX for WBAN-based Healthcare Applications

  • Lama Alfaify;Nujud Alnajem;Haya Alanzi;Rawan Almutiri;Areej Alotaibi;Nourah Alhazri;Awatif Alqahtani
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.219-230
    • /
    • 2023
  • Wireless Body Area Networks (WBANs) have made it easier for healthcare workers and patients to monitor patients' status continuously in real time. WBANs have complex and diverse network structures; thus, management and control can be challenging. Therefore, considering emerging Software-defined networks (SDN) with WBANs is a promising technology since SDN implements a new network management and design approach. The SDN concept is used in this study to create more adaptable and dynamic network architectures for WBANs. The study focuses on comparing the performance of two SDN controllers, POX and Ryu, using Mininet, an open-source simulation tool, to construct network topologies. The performance of the controllers is evaluated based on bandwidth, throughput, and round-trip time metrics for networks using an OpenFlow switch with sixteen nodes and a controller for each topology. The study finds that the choice of network controller can significantly impact network performance and suggests that monitoring network performance indicators is crucial for optimizing network performance. The project provides valuable insights into the performance of SDN-based WBANs using POX and Ryu controllers and highlights the importance of selecting the appropriate network controller for a given network architecture.

A Modified Delay and Doppler Profiler based ICI Canceling OFDM Receiver for Underwater Multi-path Doppler Channel

  • Catherine Akioya;Shiho Oshiro;Hiromasa Yamada;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.1-8
    • /
    • 2023
  • An Orthogonal Frequency Division Multiplexing (OFDM) based wireless communication system has drawn wide attention for its high transmission rate and high spectrum efficiency in not only radio but also Underwater Acoustic (UWA) applications. Because of the narrow sub-carrier spacing of OFDM, orthogonality between sub-carriers is easily affected by Doppler effect caused by the movement of transmitter or receiver. Previously, Doppler compensation signal processing algorithm for Desired propagation path was proposed. However, other Doppler shifts caused by delayed Undesired signal arriving from different directions cannot be perfectly compensated. Then Receiver Bit Error Rate (BER) is degraded by Inter-Carrier-Interference (ICI) caused in the case of Multi-path Doppler channel. To mitigate the ICI effect, a modified Delay and Doppler Profiler (mDDP), which estimates not only attenuation, relative delay and Doppler shift but also sampling clock shift of each multi-path component, is proposed. Based on the outputs of mDDP, an ICI canceling multi-tap equalizer is also proposed. Computer simulated performances of one-tap equalizer with the conventional Time domain linear interpolated Channel Transfer Function (CTF) estimator, multi-tap equalizer based on mDDP are compared. According to the simulation results, BER improvement has been observed. Especially, in the condition of 16QAM modulation, transmitting vessel speed of 6m/s, two-path multipath channel with direct path and ocean surface reflection path; more than one order of magnitude BER reduction has been observed at CNR=30dB.