• Title/Summary/Keyword: Wireless Real Time Measuring System

Search Result 63, Processing Time 0.027 seconds

Development and application of a vision-based displacement measurement system for structural health monitoring of civil structures

  • Lee, Jong Jae;Fukuda, Yoshio;Shinozuka, Masanobu;Cho, Soojin;Yun, Chung-Bang
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.373-384
    • /
    • 2007
  • For structural health monitoring (SHM) of civil infrastructures, displacement is a good descriptor of the structural behavior under all the potential disturbances. However, it is not easy to measure displacement of civil infrastructures, since the conventional sensors need a reference point, and inaccessibility to the reference point is sometimes caused by the geographic conditions, such as a highway or river under a bridge, which makes installation of measuring devices time-consuming and costly, if not impossible. To resolve this issue, a visionbased real-time displacement measurement system using digital image processing techniques is developed. The effectiveness of the proposed system was verified by comparing the load carrying capacities of a steel-plate girder bridge obtained from the conventional sensor and the present system. Further, to simultaneously measure multiple points, a synchronized vision-based system is developed using master/slave system with wireless data communication. For the purpose of verification, the measured displacement by a synchronized vision-based system was compared with the data measured by conventional contact-type sensors, linear variable differential transformers (LVDT) from a laboratory test.

Evaluation System for Forward Vehicle Collision Warning System (전방차량충돌경고장치(FVCWS) 평가 시스템)

  • Yong, Boo-Joong;Park, Yo-Han;Yoon, Kyong-Han;Hwang, Duk-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.85-90
    • /
    • 2007
  • The main function of the Forward Vehicle Collision Warning System (FVCWS) is to warn a driver when he or she experiences dangerous situations caused by a forward vehicle. Warning distance algorithms under same dangerous circumstances are often various depending on automobile manufacturers and component suppliers. Human factors also should be considered to warn the driver at an adequate warning distance. Therefore, it is necessary to develop a system for evaluating the pertinent warning timing in an identically dangerous situation. The system consists of sensors for measuring speed and acceleration of subject vehicle and target vehicle, controllers to follow the velocity profile properly, and wireless telecommunication equipments for receiving or transmitting the measured data in a real-time. According to actual field tests, it is shown that the developed system is suitable to evaluate warning distance of FVCWS.

Apply u-Health Design and Development of Automotive Smart Space Network (u-Health 접목을 통한 자동차 Smart Space Network 환경 설계 및 구축)

  • Ahn, Sung-Yong;Kim, Han-Woong;Park, Peom;Park, Doo-Jin
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.155-159
    • /
    • 2009
  • In this paper ubiquitous health care system that can monitor health condition was implemented through measuring the sensor that is installed in vehicles. Implemented system consists of various wireless sensors and DB server, transmitting information that is sensed in real-time. In addition, through the sensed data based algorithm, the system which couples Web-based JSP program with Flash GUI, providing information as well as emergency service was established.

Form Integrated Wireless Sensor Network for Monitoring of Concrete Curing (콘크리트 양생 모니터링을 위한 거푸집 일체형 무선센서네트워크(WSN) 시스템)

  • Lee, Sung-Bok;Park, Won-Jun;Cho, Myoung-Won;Lee, Seung-Yeop;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.173-175
    • /
    • 2012
  • Temperature during concrete curing can be effectively used to predict the early age strength of concrete However, various current methods have limits to provide the temperature data in real time due to harsh working environment including frequent cutting of wires. This paper presents the results of our investigation of an all-in-one Wireless sensor network (WSN) for the management of the curing temperature of in-placed concrete at early curing stages. Also, the network device for transmission can be easily separated from the probe sensor part and reused consistently. The field experiment entailed measuring the curing temperature of concrete using the WSN. After fresh concrete was poured into the formworks, the signals were measured at a 150 m radius from the field office. The signal was acquired for 28 days without any dispersion or interruption at the construction site; therefore, this study confirms the applicability of the proposed system to a construction site.

  • PDF

The development of feeding amount monitoring system of the abalone aquaculture using load cell (로드셀을 이용한 전복 양식장 먹이 섭이량 모니터링 시스템 개발)

  • KANG, Tae-Jong;MIN, Eun-Bi;YU, Yeong-Seok;LEE, Jeong-Sik;HWANG, Doo-Jin
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.4
    • /
    • pp.390-400
    • /
    • 2021
  • One of the problems with abalone farms is that they need to be checked frequently after feeding them or visited once or twice a day and that the amount of food intake constantly fluctuates due to changes in water temperature around the farm and typhoons. In addition, the condition of abalone is not constant as it is divided into places that eat well and do not eat well according to its location. In order to solve this problem, there is a method of measuring the amount of food intake by using a load cell that can measure even the smallest weight in an abalone farm. Through this study, we implemented a system capable of measuring the amount of abalone feed required for systematic management of abalone farms and real-time monitoring using mobile and client PCs.

Study on the IPMC electrical characteristic change For the utilization of Ocean Current Energy (IPMC 해양 발전 플랜트 모니터링 시스템)

  • Son, Kyung-Min;Kim, Min;Kim, Hyun-jo;Park, Gi-Won;Byun, Gi-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.914-916
    • /
    • 2013
  • Renewable energy from the environment in a variety of ways to obtain various forms of energy. Recent functional polymer composites (EAP) to take advantage of the pressure and vibration of physical energy into electrical energy storage, to take advantage of current collector technology is attracting attention. EAP, a type of IPMC (Ionic exchange Polymer Composite) got a hydrophilic properties, marine power plants is being studied as a source of energy. Studies using IPMC marine power plant because there is a constraint on the time, IPMC in real time, which can measure the power generated by the system is required, Due to the nature of the power plant to be floating in the sea through the power cable and data transmission measurement system is hard drive self-generation and wireless data transmission system is required. In this study, IPMC marine power plant is to develop a system of monitoring. IPMC for several power plants to build individual current-voltage measurement system, CAN communication with the main system to collect all the information and wireless data transmission to occur, and Generation of electricity using solar energy to building systems in real-time without an external power supply to drive the measuring system is to develop a monitoring system.

  • PDF

Health assessment of RC building subjected to ambient excitation : Strategy and application

  • Mehboob, Saqib;Khan, Qaiser Uz Zaman;Ahmad, Sohaib;Anwar, Syed M.
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.185-201
    • /
    • 2022
  • Structural Health Monitoring (SHM) is used to provide reliable information about the structure's integrity in near realtime following extreme incidents such as earthquakes, considering the inevitable aging and degradation that occurs in operating environments. This paper experimentally investigates an integrated wireless sensor network (Wi-SN) based monitoring technique for damage detection in concrete structures. An effective SHM technique can be used to detect potential structural damage based on post-earthquake data. Two novel methods are proposed for damage detection in reinforced concrete (RC) building structures including: (i) Jerk Energy Method (JEM), which is based on time-domain analysis, and (ii) Modal Contributing Parameter (MCP), which is based on frequency-domain analysis. Wireless accelerometer sensors are installed at each story level to monitor the dynamic responses from the building structure. Prior knowledge of the initial state (immediately after construction) of the structure is not required in these methods. Proposed methods only use responses recorded during ambient vibration state (i.e., operational state) to estimate the damage index. Herein, the experimental studies serve as an illustration of the procedures. In particular, (i) a 3-story shear-type steel frame model is analyzed for several damage scenarios and (ii) 2-story RC scaled down (at 1/6th) building models, simulated and verified under experimental tests on a shaking table. As a result, in addition to the usual benefits like system adaptability, and cost-effectiveness, the proposed sensing system does not require a cluster of sensors. The spatial information in the real-time recorded data is used in global damage identification stage of SHM. Whereas in next stage of SHM, the damage is detected at the story level. Experimental results also show the efficiency and superior performance of the proposed measuring techniques.

Development of Wireless Smart Sensing Framework for Structural Health Monitoring of High-speed Railway Bridges (고속 철도 교량의 구조 건전성 모니터링을 위한 스마트 무선 센서 프레임워크 개발)

  • Kim, Eunju;Park, Jong-Woong;Sim, Sung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.1-9
    • /
    • 2016
  • Railroad bridges account for 25% of the entire high-speed rail network. Railway bridges are subject to gradual structural degradation or fatigue accumulation due to consistent and repeating excitation by fast moving trains. Wireless sensing technology has opened up a new avenue for bridge health monitoring owing to its low-cost, high fidelity, and multiple sensing capability. On the other hand, measuring the transient response during train passage is quite challenging that the current wireless sensor system cannot be applied due to the intrinsic time delay of the sensor network. Therefore, this paper presents a framework for monitoring such transient responses with wireless sensing systems using 1) real-time excessive vibration monitoring through ultra-low-power MEMS accelerometers, and 2) post-event time synchronization scheme. The ultra-low power accelerometer continuously monitors the vibration and trigger network when excessive vibrations are detected. The entire network of wireless smart sensors starts sensing through triggering and the post-event time synchronization is conducted to compensate for the time error on the measured responses. The results of this study highlight the potential of detecting the impact load and triggering the entire network, as well as the effectiveness of the post-event time synchronized scheme for compensating for the time error. A numerical and experimental study was carried out to validate the proposed sensing hardware and time synchronization method.

Development of the Dredged Sediments Management System and Its Managing Criteria of Debris Barrier (사방댐 준설퇴적물 관리시스템 개발 및 관리기준 제안)

  • Song, Young-Suk;Yun, Jung-Mann;Jung, In-Keun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.267-275
    • /
    • 2018
  • The dredged sediment management system was developed to have an objective, quantitative and scientific decision for the optimum removal time of dredged sediments behind debris barrier and was set up at the real site. The dredged sediment management system is designed and developed to directly measure the dredged sediments behind debris barrier in the field. This management system is composed of Data Acquisition System (DAS), Solar System and measurement units for measuring the weight of dredge sediments. The weight of dredged sediments, the water level and the rainfall are measured in real time using the monitoring sensors, and their data can be transmitted to the office through a wireless communication method. The monitoring sensors are composed of the rain gauge to measure rainfall, the load cell system to measure the weight of dredged sediments, and water level meter to measure the water level behind debris barrier. The management criteria of dredged sediments behind debris barrier was suggested by using the weight of dredged sediments. At first, the maximum weight of dredged sediments that could be deposited behind debris barrier was estimated. And then when 50%, 70% and 90% of the maximum dredged sediments weight were accumulated behind debris barrier, the management criteria were divided into phases of Outlooks, Watch and Warning, respectively. The weight of dredged sediments can be monitored by using the dredged sediment management system behind debris barrier in real time, and the condition of debris barrier and the removal time of dredged sediments can be decided based on monitoring results.

A Study of Biosignal Analysis System for Sensibility Evaluation (감성을 평가하기 위한 생체신호 분석 시스템에 관한 연구)

  • Lee, Ji-Hyeoung;Kim, Kyung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.12
    • /
    • pp.19-26
    • /
    • 2010
  • In this paper, we studied about the Embedded System of the biosignal measurement and analysis to sensibility evaluation in daily life for non-intrusive. This system is two kinds of measuring biosiganls(Electrocardiogram:ECG, Photoplethysmography:PPG) and analyzed by real-time wireless transmission to notebook PC using bluetooth for consistent and reliability of physiological way to assess continuously changing sensibility. Comparative studied of an autonomic nerve system activity ratio on characteristics frequency band of two kinds of biosignal analyzed frequency way using the Fast Fourier Transform(FFT) and Power Spectrum Density(PSD). Also the key idea of this system is to minimize computing of analysis algorithm for faster and more accurate to assess the sensibility, and the result of the visualization using graph. In this paper, we evaluated the analysis system to assess sensibility that measuring various situation in daily life using a non-intrusive biosignal measurement system, and the accuracy and reliability in comparison with difference of result by development analysis system.